Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(7)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37048118

RESUMO

Multiple sclerosis (MS) is an autoimmune disease affecting the CNS and occurring far more prevalently in women than in men. In both MS and its animal models, sex hormones play important immunomodulatory roles. We have previously shown that experimental autoimmune encephalomyelitis (EAE) affects the hypothalamic-pituitary-gonadal axis in rats of both sexes and induces an arrest in the estrous cycle in females. To investigate the gonadal status in female rats with EAE, we explored ovarian morphometric parameters, circulating and intraovarian sex steroid levels, and the expression of steroidogenic machinery components in the ovarian tissue. A prolonged state of diestrus was recorded during the peak of EAE, with maintenance of the corpora lutea, elevated intraovarian progesterone levels, and increased gene and protein expression of StAR, similar to the state of pseudopregnancy. The decrease in CYP17A1 protein expression was followed by a decrease in ovarian testosterone and estradiol levels. On the contrary, serum testosterone levels were slightly increased. With unchanged serum estradiol levels, these results point at extra-gonadal sites of sex steroid biosynthesis and catabolism as important regulators of their circulating levels. Our study suggests alterations in the function of the female reproductive system during central autoimmunity and highlights the bidirectional relationships between hormonal status and EAE.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Masculino , Ratos , Feminino , Animais , Hormônios Esteroides Gonadais/metabolismo , Ovário/metabolismo , Testosterona/metabolismo , Estradiol/metabolismo
2.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408922

RESUMO

Neuroinflammation and microglial activation, common components of most neurodegenerative diseases, can be imitated in vitro by challenging microglia cells with Lps. We here aimed to evaluate the effects of agmatine pretreatment on Lps-induced oxidative stress in a mouse microglial BV-2 cell line. Our findings show that agmatine suppresses nitrosative and oxidative burst in Lps-stimulated microglia by reducing iNOS and XO activity and decreasing O2- levels, arresting lipid peroxidation, increasing total glutathione content, and preserving GR and CAT activity. In accordance with these results, agmatine suppresses inflammatory NF-kB, and stimulates antioxidant Nrf2 pathway, resulting in decreased TNF, IL-1 beta, and IL-6 release, and reduced iNOS and COX-2 levels. Together with increased ARG1, CD206 and HO-1 levels, our results imply that, in inflammatory conditions, agmatine pushes microglia towards an anti-inflammatory phenotype. Interestingly, we also discovered that agmatine alone increases lipid peroxidation end product levels, induces Nrf2 activation, increases total glutathione content, and GPx activity. Thus, we hypothesize that some of the effects of agmatine, observed in activated microglia, may be mediated by induced oxidative stress and adaptive response, prior to Lps stimulation.


Assuntos
Agmatina , Fator 2 Relacionado a NF-E2 , Agmatina/metabolismo , Agmatina/farmacologia , Animais , Glutationa/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo
3.
Front Neurosci ; 15: 649485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220419

RESUMO

Multiple sclerosis (MS) is an inflammatory, demyelinating disease with an unknown origin. Previous studies showed the involvement of the hypothalamic-pituitary-adrenal (HPA) axis to susceptibility to autoimmune diseases, including MS, and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). During MS/EAE, innate immune cells are activated and release cytokines and other inflammatory mediators, leading to a vicious cycle of inflammation. In response to inflammation, the activated HPA axis modulates immune responses via glucocorticoid activity. Because the mechanisms involving oxidative stress to the HPA axis are relatively unrevealed, in this study, we investigate the inflammatory and oxidative stress status of HPA axis during EAE. Our results reveal an upregulation of Pomc gene expression, followed by POMC and ACTH protein increase at the peak of the EAE in the pituitary. Also, prostaglandins are well-known contributors of HPA axis activation, which increases during EAE at the periphery. The upregulated Tnf expression in the pituitary during the peak of EAE occurred. This leads to the activation of oxidative pathways, followed by upregulation of inducible NO synthase expression. The reactive oxidant/nitrosative species (ROS/RNS), such as superoxide anion and NO, increase their levels at the onset and peak of the disease in the pituitary and adrenal glands, returning to control levels at the end of EAE. The corticotrophs in the pituitary increased in number and volume at the peak of EAE that coincides with high lipid peroxidation levels. The expression of MC2R in the adrenal glands increases at the peak of EAE, where strong induction of superoxide anion and malondialdehyde (MDA), reduced total glutathione (GSH) content, and catalase activity occurred at the peak and end of EAE compared with controls. The results obtained from this study may help in understanding the mechanisms and possible pharmacological modulation in MS and demonstrate an effect of oxidative stress exposure in the HPA activation during the course of EAE.

4.
Sci Rep ; 11(1): 8996, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903635

RESUMO

Multiple sclerosis (MS) is an autoimmune disease that usually occurs during the reproductive years in both sexes. Many male patients with MS show lower blood testosterone levels, which was also observed in male rats during experimental autoimmune encephalomyelitis (EAE), an animal model of MS. To better understand the causes of decreased testosterone production during EAE, we investigated the expression status of genes and proteins associated with steroidogenesis in the testes. No changes in the number of interstitial cells were observed in EAE animals, but the expression of the insulin-like 3 gene was reduced at the peak of the disease, implying that the Leydig cell functional capacity was affected. Consistent with this finding, the expression of most steroidogenic enzyme genes and proteins was reduced during EAE, including StAR, CYP11A1, CYP17A1 and HSD3B. No signs of testicular inflammation were observed. Recovery of steroidogenesis was observed after injection of hCG, the placental gonadotropin, or buserelin acetate, a gonadotropin-releasing hormone analogue, at the peak of EAE. Together, our results are consistent with the hypothesis that impaired testicular steroidogenesis originates upstream of the testes and that low serum LH is the main cause of decreased testosterone levels during EAE.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/metabolismo , Testículo/metabolismo , Testosterona/biossíntese , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol/biossíntese , Encefalomielite Autoimune Experimental/patologia , Regulação Enzimológica da Expressão Gênica , Masculino , Complexos Multienzimáticos/biossíntese , Esclerose Múltipla/patologia , Progesterona Redutase/biossíntese , Ratos , Esteroide 17-alfa-Hidroxilase/biossíntese , Esteroide Isomerases/biossíntese , Testículo/patologia
5.
Histol Histopathol ; 36(3): 267-290, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33226087

RESUMO

Astrocytes, the most abundant glial cells in the central nervous system (CNS), have numerous integral roles in all CNS functions. They are essential for synaptic transmission and support neurons by providing metabolic substrates, secreting growth factors and regulating extracellular concentrations of ions and neurotransmitters. Astrocytes respond to CNS insults through reactive astrogliosis, in which they go through many functional and molecular changes. In neuroinflammatory conditions reactive astrocytes exert both beneficial and detrimental functions, depending on the context and heterogeneity of astrocytic populations. In this review we profile astrocytic diversity in the context of neuroinflammation; with a specific focus on multiple sclerosis (MS) and its best-described animal model experimental autoimmune encephalomyelitis (EAE). We characterize two main subtypes, protoplasmic and fibrous astrocytes and describe the role of intermediate filaments in the physiology and pathology of these cells. Additionally, we outline a variety of markers that are emerging as important in investigating astrocytic biology in both physiological conditions and neuroinflammation.


Assuntos
Astrócitos/patologia , Encéfalo/patologia , Encefalomielite Autoimune Experimental/patologia , Filamentos Intermediários/patologia , Esclerose Múltipla/patologia , Medula Espinal/patologia , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Biomarcadores/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Filamentos Intermediários/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Fenótipo , Prognóstico , Medula Espinal/imunologia , Medula Espinal/metabolismo
6.
J Neurosci Res ; 98(11): 2317-2332, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32799373

RESUMO

Interaction between autoreactive immune cells and astroglia is an important part of the pathologic processes that fuel neurodegeneration in multiple sclerosis. In this inflammatory disease, immune cells enter into the central nervous system (CNS) and they spread through CNS parenchyma, but the impact of these autoreactive immune cells on the activity pattern of astrocytes has not been defined. By exploiting naïve astrocytes in culture and CNS-infiltrated immune cells (CNS IICs) isolated from rat with experimental autoimmune encephalomyelitis (EAE), here we demonstrate previously unrecognized properties of immune cell-astrocyte interaction. We show that CNS IICs but not the peripheral immune cell application, evokes a rapid and vigorous intracellular Ca2+ increase in astrocytes by promoting glial release of ATP. ATP propagated Ca2+ elevation through glial purinergic P2X7 receptor activation by the hemichannel-dependent nucleotide release mechanism. Astrocyte Ca2+ increase is specifically triggered by the autoreactive CD4+ T-cell application and these two cell types exhibit close spatial interaction in EAE. Therefore, Ca2+ signals may mediate a rapid astroglial response to the autoreactive immune cells in their local environment. This property of immune cell-astrocyte interaction may be important to consider in studies interrogating CNS autoimmune disease.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio , Imunidade Celular , Receptores Purinérgicos/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Neuroglia/metabolismo , Ratos , Receptores Purinérgicos P2X7/imunologia , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais , Medula Espinal/citologia , Medula Espinal/imunologia
7.
Brain Behav Immun ; 89: 233-244, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32592862

RESUMO

Multiple sclerosis develops during reproductive years in a sex-specific manner. Various neuroendocrine changes have been described in this inflammatory, demyelinating, and debilitating disease. We here aimed to determine the extent and sex specificity of alterations in the hypothalamic-pituitary-gonadal axis in the rat model of multiple sclerosis named experimental autoimmune encephalomyelitis. During the disease course, the hypothalamic tissue showed transient upregulation of inflammatory marker genes Gfap, Cd68, Ccl2, and Il1b in both sexes, but accompanied by sex-specific downregulation of Kiss1 (in females only) and Gnrh1 (in males only) expression. In females, the expression of gonadotrope-specific genes Lhb, Cga, and Gnrhr was also inhibited, accompanied by decreased basal but not stimulated serum luteinizing hormone levels and a transient arrest of the estrous cycle. In contrast, Fshb expression and serum progesterone levels were transiently elevated, findings consistent with the maintenance of the corpora lutea, and elevated immunohistochemical labeling of ovarian StAR, a rate limiting protein in steroidogenic pathway. In males, downregulation of Gnrhr expression and basal and stimulated serum luteinizing hormone and testosterone levels were accompanied by inhibited testicular StAR protein expression. We propose that inflammation of hypothalamic tissue downregulates Kiss1 and Gnrh1 expression in females and males, respectively, leading to sex-specific changes downstream the axis.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Feminino , Hipotálamo , Hormônio Luteinizante , Masculino , Ratos
8.
Free Radic Biol Med ; 148: 123-127, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31911148

RESUMO

Upon release in response to stress, epinephrine (Epi) may interact with labile iron pool in human plasma with potentially important (patho)physiological consequences. We have shown that Epi and Fe3+ build stable 1:1 high-spin bidentate complex at physiological pH, and that Epi does not undergo degradation in the presence of iron. However, the interactions of Epi with the more soluble Fe2+, and the impact of iron on biological activity of Epi are still not known. Herein we showed that Epi and Fe2+ build colorless complex which is stable under anaerobic conditions. In the presence of O2, Epi promoted the oxidation of Fe2+ and the formation of Epi-Fe3+ complex. Cyclic voltammetry showed that mid-point potential of Epi-Fe2+ complex is very low (-582 mV vs. standard hydrogen electrode), which explains catalyzed oxidation of Fe2+. Next, we examined the impact of iron binding on biological performance of Epi using patch clamping in cell culture with constitutive expression of adrenergic receptors. Epi alone evoked an increase of outward currents, whereas Epi in the complex with Fe3+ did not. This implies that the binding of Epi to adrenergic receptors and their activation is prevented by the formation of complex with iron. Pro-oxidative activity of Epi-Fe2+ complex may represent a link between chronic stress and cardiovascular problems. On the other hand, labile iron could serve as a modulator of biological activity of ligands. Such interactions may be important in human pathologies that are related to iron overload or deficiency.


Assuntos
Quelantes , Ferro , Epinefrina , Humanos , Oxirredução , Receptores Adrenérgicos
9.
Front Neurosci ; 13: 410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105520

RESUMO

Purinergic signaling is critically involved in neuroinflammation associated with multiple sclerosis (MS) and its major inflammatory animal model, experimental autoimmune encephalomyelitis (EAE). Herein, we explored the expression of ectonucleoside triphosphate diphosphohydrolase1 (NTPDase1/CD39) in the spinal cord, at the onset (Eo), peak (Ep), and end (Ee) of EAE. Several-fold increase in mRNA and in NTPDase1 protein levels were observed at Eo and Ep. In situ hybridization combined with fluorescent immunohistochemistry showed that reactive microglia and infiltrated mononuclear cells mostly accounted for the observed increase. Colocalization analysis revealed that up to 80% of Iba1 immunoreactivity and ∼50% of CD68 immunoreactivity was colocalized with NTPDase1, while flow cytometric analysis revealed that ∼70% of mononuclear infiltrates were NTPDase1+ at Ep. Given the main role of NTPDase1 to degrade proinflammatory ATP, we hypothesized that the observed up-regulation of NTPDase1 may be associated with the transition between proinflammatory M1-like to neuroprotective M2-like phenotype of microglia/macrophages during EAE. Functional phenotype of reactive microglia/macrophages that overexpress NTPDase1 was assessed by multi-image colocalization analysis using iNOS and Arg1 as selective markers for M1 and M2 reactive states, respectively. At the peak of EAE NTPDase1 immunoreactivity showed much higher co-occurrence with Arg1 immunoreactivity in microglia and macrophages, compared to iNOS, implying its stronger association with M2-like reactive phenotype. Additionally, in ∼80% of CD68 positive cells NTPDase1 was coexpressed with Arg1 compared to negligible fraction coexpresing iNOS and ∼15% coexpresing both markers, additionally indicating prevalent association of NTPDase1 with M2-like microglial/macrophages phenotype at Ep. Together, our data suggest an association between NTPDase1 up-regulation by reactive microglia and infiltrated macrophages and their transition toward antiinflammatory phenotype in EAE.

10.
Neurochem Res ; 43(5): 1020-1034, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29574670

RESUMO

Kv1.3 is a voltage gated potassium channel that has been implicated in pathophysiology of multiple sclerosis (MS). In the present study we investigated temporal and cellular expression pattern of this channel in the lumbar part of spinal cords of animals with experimental autoimmune encephalomyelitis (EAE), animal model of MS. EAE was actively induced in female Dark Agouti rats. Expression of Kv1.3 was analyzed at different time points of disease progression, at the onset, peak and end of EAE. We here show that Kv1.3 increased by several folds at the peak of EAE at both gene and protein level. Double immunofluorescence analyses demonstrated localization of Kv1.3 on activated microglia, macrophages, and reactive astrocytes around inflammatory lesions. In vitro experiments showed that pharmacological block of Kv1.3 in activated astrocytes suppresses the expression of proinflammatory mediators, suggesting a role of this channel in inflammation. Our results support the hypothesis that Kv1.3 may be a therapeutic target of interest for MS and add astrocytes to the list of cells whose activation would be suppressed by inhibiting Kv1.3 in inflammatory conditions.


Assuntos
Astrócitos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Canal de Potássio Kv1.3/biossíntese , Animais , Astrócitos/patologia , Astrócitos/ultraestrutura , Linhagem Celular Tumoral , Sobrevivência Celular , Progressão da Doença , Encefalomielite Autoimune Experimental/patologia , Feminino , Regulação da Expressão Gênica , Inflamação/patologia , Canal de Potássio Kv1.3/genética , Macrófagos/metabolismo , Microglia/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Regulação para Cima
11.
Front Cell Neurosci ; 11: 333, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163045

RESUMO

The present study explores tissue and cellular distribution of ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) and the gene and protein expression in rat spinal cord during the course of experimental autoimmune encephalomyelitis (EAE). Given that NTPDase2 hydrolyzes ATP with a transient accumulation of ADP, the expression of ADP-sensitive P2 purinoceptors was analyzed as well. The autoimmune disease was actively induced in Dark Agouti female rats and the changes were analyzed 10, 15 and 29 days after the induction. These selected time points correspond to the onset ( Eo ), peak ( Ep ) and recovery ( Er ) from EAE. In control animals, NTPDase2 was confined in the white matter, in most of the glial fibrillary acidic protein (GFAP)-immunoreactive (ir) astrocytes and in a considerable number of nestin-ir cells, while the other cell types were immunonegative. Immunoreactivity corresponding to NTPDase2 decreased significantly at Eo and Ep and then returned to the baseline levels at Er . The preservation of the proportion of GFAP single-labeled and GFAP/NTPDase2 double-labeled elements along the course of EAE indicated that changes in NTPDase2-ir occurred at fibrous astrocytes that typically express NTPDase2 in normal conditions. Significant downregulation of P2Y1 and P2Y12 receptor proteins at Eo and several-fold induction of P2Y12 and P2Y13 receptor proteins at Ep and/or Er were observed implying that the pathophysiological process in EAE may be linked to ADP signaling. Cell-surface expression of NTPDase2, NTPDase1/CD39 and ecto-5'-nucleotidase (eN/CD73) was analyzed in CD4+ T cells of a draining lymph node by fluorescence-activated cell sorting. The induction of EAE was associated with a transient decrease in a number of CD4+ NTPDase2+ T cells in a draining lymph node, whereas the recovery was characterized by an increase in NTPDase2+ cells in both CD4+ and CD4- cell populations. The opposite was found for NTPDase1/CD39+ and eN/CD73+ cells, which slightly increased in number with progression of the disease, particularly in CD4- cells, and then decreased in the recovery. Finally, CD4+ NTPDase2+ cells were never observed in the spinal cord parenchyma. Taken together, our results suggest that the process of neuroinflammation in EAE may be associated with altered ADP signaling.

12.
Sci Rep ; 7(1): 2702, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28578430

RESUMO

Increased evidence suggests that dysregulation of cholesterol metabolism may be a key event contributing to progression of multiple sclerosis (MS). Using an experimental autoimmune encephalomyelitis (EAE) model of MS we revealed specific changes in the mRNA and protein expression of key molecules involved in the maintaining of cholesterol homeostasis in the rat spinal cord: 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (HMGCR), apolipoprotein E (ApoE) and cholesterol 24-hydroxylase (CYP46A1) during the course of disease. The presence of myelin lipid debris was seen only at the peak of EAE in demyelination loci being efficiently removed during the recovery period. Since CYP46A1 is responsible for removal of cholesterol excess, we performed a detailed profiling of CYP46A1 expression and revealed regional and temporal specificities in its distribution. Double immunofluorescence staining demonstrated CYP46A1 localization with neurons, infiltrated macrophages, microglia and astrocytes in the areas of demyelination, suggesting that these cells play a role in cholesterol turnover in EAE. We propose that alterations in the regulation of cholesterol metabolism at the onset and peak of EAE may add to the progression of disease, while during the recovery period may have beneficial effects contributing to the regeneration of myelin sheath and restoration of neuronal function.


Assuntos
Colesterol/metabolismo , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Metabolismo dos Lipídeos/genética , Medula Espinal/metabolismo , Transcriptoma , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Biomarcadores , Colesterol 24-Hidroxilase/genética , Colesterol 24-Hidroxilase/metabolismo , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/patologia , Expressão Gênica , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/imunologia , Microglia/metabolismo , Microglia/patologia , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Neurônios/metabolismo , Fenótipo , Ratos , Índice de Gravidade de Doença , Medula Espinal/patologia
13.
Metallomics ; 9(2): 141-148, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28124054

RESUMO

The loss of metal homeostasis has been implicated in the pathophysiology of mesial temporal lobe epilepsy associated with hippocampal sclerosis (mTLE-HS). Here we applied laser ablation inductively coupled plasma mass spectrometry imaging to establish the spatial distribution of Zn, Fe, Cu and Mn in coronal sections of hippocampi of four patients with drug-resistant mTLE-HS who underwent amygdalohippocampectomy. Detailed maps of the metal concentrations in the different morphological areas/layers were built and analyzed. The highest level of Zn (>20 µg g-1) was found in mossy fiber-rich regions - cornu ammonis field 4 (CA4), gyrus dentatus, and CA3. The distribution of Fe appears to reflect the routes of the main intrahippocampal blood vessels. The highest concentrations of Cu (>10 µg g-1) and Mn (>15 µg g-1) were observed in regions/layers with neuron somata - subiculum, CA4, gyrus dentatus, and stratum pyramidale (SPy) in CA1 and CA2. Alveus and other regions with axons and dendrites generally showed lower levels of Zn, Cu, and Mn. The Cu concentration was decreased in the areas of total neuronal loss in SPy in CA1 (9.73 ± 0.91 µg g-1), compared to the subiculum (13.32 ± 1.29 µg g-1; p = 0.043). The Cu and Mn concentrations correlated positively with neuron density in the SPy in CA1 (R = 0.629, p < 0.001; and R = 0.391, p = 0.004). These results provide a deeper insight into hippocampal metabolism of metals, and pave the road for identifying the components of the mechanism of epileptogenesis among Cu and Mn transporters and metalloproteins.


Assuntos
Epilepsia do Lobo Temporal/complicações , Giro do Cíngulo/patologia , Hipocampo/patologia , Metais/análise , Esclerose/patologia , Adulto , Feminino , Giro do Cíngulo/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Esclerose/complicações , Esclerose/metabolismo , Adulto Jovem
14.
Curr Pharm Des ; 23(5): 693-730, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27981909

RESUMO

Persistent neuroinflammation is now recognized as a chief pathological component of practically all neurodegenerative diseases. Neuroinflammation in the central nervous system (CNS), is accompanied with immune responses of glial cells. Glial cells respond to pathological stimuli through antigen presentation, and cytokine and chemokine signaling. Therefore, limiting CNS inflammation represents prospective therapeutic approach in diseases like Alzheimer's, amyotrophic lateral sclerosis, Parkinson's, ischemia, various psychiatric disorders and Multiple sclerosis (MS). As a complex disease, MS is characterized by neuroinflamation, demyelination and sequential axonal loss. Due to unknown etiology and the heterogeneous presentation of the disease, MS is hard to treat and the search for potential therapeutics is wide and meticulous. However, finding a proper antineuroinflammatory drug may bring an advance in selecting novel treatment regimens of ample of neurodegenerative diseases and neurological disorders. The present review gives the overview of the existing and potential therapies in MS, aimed to modulate neuroinflammation and ensure neuroprotection.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inflamação/fisiopatologia , Esclerose Múltipla/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Neuroimunomodulação/efeitos dos fármacos , Animais , Humanos , Esclerose Múltipla/etiologia
15.
Front Cell Neurosci ; 9: 351, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388737

RESUMO

Chronic microglial activation and resulting sustained neuroinflammatory reaction are generally associated with neurodegeneration. Activated microglia acquires proinflammatory cellular profile that generates oxidative burst. Their persistent activation exacerbates inflammation, which damages healthy neurons via cytotoxic mediators, such as superoxide radical anion and nitric oxide. In our recent study, we have shown that benfotiamine (S-benzoylthiamine O-monophosphate) possesses anti-inflammatory effects. Here, the effects of benfotiamine on the pro-oxidative component of activity of LPS-stimulated BV-2 cells were investigated. The activation of microglia was accompanied by upregulation of intracellular antioxidative defense, which was further promoted in the presence of benfotiamine. Namely, activated microglia exposed to non-cytotoxic doses of benfotiamine showed increased levels and activities of hydrogen peroxide- and superoxide-removing enzymes-catalase and glutathione system, and superoxide dismutase. In addition, benfotiamine showed the capacity to directly scavenge superoxide radical anion. As a consequence, benfotiamine suppressed the activation of microglia and provoked a decrease in NO and (·)O(-) 2 production and lipid peroxidation. In conclusion, benfotiamine might silence pro-oxidative activity of microglia to alleviate/prevent oxidative damage of neighboring CNS cells.

16.
Anal Cell Pathol (Amst) ; 2015: 923614, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413464

RESUMO

Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 µM) modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 µM) to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS) stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 µM ribavirin promoted LPS induced apoptosis. We determined that 1 µM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 µM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation.


Assuntos
Inflamação/patologia , Microglia/enzimologia , Microglia/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Ribavirina/farmacologia , Animais , Anexina A5/metabolismo , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Citometria de Fluxo , Lipopolissacarídeos , Camundongos , Microglia/efeitos dos fármacos , Óxido Nítrico/metabolismo , Propídio/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
17.
Mediators Inflamm ; 2015: 498405, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25972624

RESUMO

The exact mechanisms by which treatment with hyperbaric oxygen (HBOT) exerts its beneficial effects on recovery after brain injury are still unrevealed. Therefore, in this study we investigated the influence of repetitive HBOT on the reactive astrogliosis and expression of mediators of inflammation after cortical stab injury (CSI). CSI was performed on male Wistar rats, divided into control, sham, and lesioned groups with appropriate HBO. The HBOT protocol was as follows: 10 minutes of slow compression, 2.5 atmospheres absolute (ATA) for 60 minutes, and 10 minutes of slow decompression, once a day for 10 consecutive days. Data obtained using real-time polymerase chain reaction, Western blot, and immunohistochemical and immunofluorescence analyses revealed that repetitive HBOT applied after the CSI attenuates reactive astrogliosis and glial scarring, and reduces expression of GFAP (glial fibrillary acidic protein), vimentin, and ICAM-1 (intercellular adhesion molecule-1) both at gene and tissue levels. In addition, HBOT prevents expression of CD40 and its ligand CD40L on microglia, neutrophils, cortical neurons, and reactive astrocytes. Accordingly, repetitive HBOT, by prevention of glial scarring and limiting of expression of inflammatory mediators, supports formation of more permissive environment for repair and regeneration.


Assuntos
Lesões Encefálicas/metabolismo , Oxigenoterapia Hiperbárica , Animais , Modelos Animais de Doenças , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Wistar , Vimentina/metabolismo
18.
Epilepsia ; 56(5): 789-99, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25864570

RESUMO

OBJECTIVE: To examine antioxidative system in hippocampi of patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis (mTLE-HS). METHODS: Activity and levels of antioxidative enzymes-catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), manganese superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD)-were assessed in hippocampi of nine pharmacoresistant mTLE-HS patients (mean age 37.7 ± [standard deviation] 6.6 years) who underwent amygdalohippocampectomy, and in 10 hippocampi obtained via autopsy from five neurologically intact controls (mean age 34.4 ± 9.0 years). Subfield and cellular (neuron/astrocyte) distribution of CAT, GPx, and MnSOD was analyzed in detail using immunohistochemical staining. RESULTS: Sclerotic hippocampi showed drastically increased activity of hydrogen peroxide-removing enzymes, CAT (p < 0.001), GPx (p < 0.001), and GR (p < 0.001), and significantly higher protein levels of CAT (p = 0.006), GPx (p = 0.040), GR (p = 0.024), and MnSOD (p = 0.004), compared to controls. CAT immunofluorescence was located mainly in neurons in both controls and HS. Control hippocampi showed GPx staining in blood vessels and CA neurons. In HS, GPx-rich loci, representing bundles of astrocytes, emerged in different hippocampal regions, whereas the number of GPx-positive vessels was drastically decreased. Neurons with abnormal morphology and strong MnSOD immunofluorescence were present in all neuronal layers in HS. Small autofluorescent deposits, most likely lipofuscin, were observed, along with astrogliosis, in CA1 in HS. SIGNIFICANCE: Antioxidative system is upregulated in HS. This documents, for the first time, that epileptogenic hippocampi are exposed to oxidative stress. Our findings provide a basis for understanding the potential involvement of redox alterations in the pathology of epilepsy, and may open new pharmacologic perspectives for mTLE-HS treatment.


Assuntos
Epilepsia do Lobo Temporal/patologia , Hipocampo/enzimologia , Oxirredutases/metabolismo , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia do Lobo Temporal/complicações , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/patologia , Humanos , Masculino , Esclerose/etiologia , Espectrofotometria , Estatísticas não Paramétricas , Adulto Jovem
19.
PLoS One ; 10(2): e0118372, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25695433

RESUMO

Microglial cells are resident immune cells of the central nervous system (CNS), recognized as key elements in the regulation of neural homeostasis and the response to injury and repair. As excessive activation of microglia may lead to neurodegeneration, therapeutic strategies targeting its inhibition were shown to improve treatment of most neurodegenerative diseases. Benfotiamine is a synthetic vitamin B1 (thiamine) derivate exerting potentially anti-inflammatory effects. Despite the encouraging results regarding benfotiamine potential to alleviate diabetic microangiopathy, neuropathy and other oxidative stress-induced pathological conditions, its activities and cellular mechanisms during microglial activation have yet to be elucidated. In the present study, the anti-inflammatory effects of benfotiamine were investigated in lipopolysaccharide (LPS)-stimulated murine BV-2 microglia. We determined that benfotiamine remodels activated microglia to acquire the shape that is characteristic of non-stimulated BV-2 cells. In addition, benfotiamine significantly decreased production of pro-inflammatory mediators such as inducible form of nitric oxide synthase (iNOS) and NO; cyclooxygenase-2 (COX-2), heat-shock protein 70 (Hsp70), tumor necrosis factor alpha α (TNF-α), interleukin-6 (IL-6), whereas it increased anti-inflammatory interleukin-10 (IL-10) production in LPS stimulated BV-2 microglia. Moreover, benfotiamine suppressed the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK) and protein kinase B Akt/PKB. Treatment with specific inhibitors revealed that benfotiamine-mediated suppression of NO production was via JNK1/2 and Akt pathway, while the cytokine suppression includes ERK1/2, JNK1/2 and Akt pathways. Finally, the potentially protective effect is mediated by the suppression of translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus. Therefore, benfotiamine may have therapeutic potential for neurodegenerative diseases by inhibiting inflammatory mediators and enhancing anti-inflammatory factor production in activated microglia.


Assuntos
Anti-Inflamatórios/farmacologia , Tiamina/análogos & derivados , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Citoesqueleto/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiamina/farmacologia
20.
Acta Histochem ; 117(2): 155-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25592752

RESUMO

Compelling evidence now points to the critical role of the cytoskeleton in neurodegeneration. In the present study, using an immunohistochemical approach, we have shown that cortical stab injury (CSI) in adult Wistar rats significantly affects temporal pattern of expression of neurofilament proteins (NFs), a major cytoskeleton components of neurons, and microtubule-associated proteins (MAP2). At 3 days post-injury (dpi) most of the NFs immunoreactivity was found in pyknotic neurons and in fragmentized axonal processes in the perilesioned cortex. These cytoskeletal alterations became more pronounced by 10dpi. At the subcellular level CSI also showed significant impact on NFs and MAP-2 expression. Thus, at 3dpi most of the dendrites disappeared, while large neuronal somata appeared like open circles pointing to membrane disintegration. Conversely, at 10dpi neuronal perikarya and a few new apical dendrites were strongly labeled. Since aberrant NF phosphorylation is a pathological hallmark of many human neurodegenerative disorders, as well as is found after stressor stimuli, the present results shed light into the expression of neurofilaments after the stab brain injury.


Assuntos
Lesões Encefálicas/metabolismo , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Proteínas de Neurofilamentos/biossíntese , Ferimentos Perfurantes/metabolismo , Animais , Lesões Encefálicas/patologia , Córtex Cerebral/patologia , Masculino , Ratos , Ratos Wistar , Ferimentos Perfurantes/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...