Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biochimie ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38513823

RESUMO

Inflammation and autoimmunity are known as central processes in many skin diseases, including psoriasis. It is therefore important to develop pre-clinical models that describe disease-related aspects to enable testing of pharmaceutical drug candidates and formulations. A widely accepted pre-clinical model of psoriasis is the imiquimod (IMQ)-induced skin inflammation mouse model, where topically applied IMQ provokes local skin inflammation. In this study, we investigated the abundance of a subset of matrix metalloproteinases (MMPs) in skin from mice with IMQ-induced skin inflammation and skin from naïve mice using targeted proteomics. Our findings reveal a significant increase in the abundance of MMP-2, MMP-7, MMP-8, and MMP-13 after treatment with IMQ compared to the control skin, while MMP-3, MMP-9, and MMP-10 were exclusively detected in the IMQ-treated skin. The increased abundance and broader representation of MMPs in the IMQ-treated skin provide valuable insight into the pathophysiology of skin inflammation in the IMQ model, adding to previous studies on cytokine levels using conventional immunochemical methods. Specifically, the changes in the MMP profiles observed in the IMQ-treated skin resemble the MMP patterns found in skin lesions of individuals with psoriasis. Ultimately, the differences in MMP abundance under IMQ-induced inflammation as compared to non-inflamed control skin can be exploited as a model to investigate drug efficacy or performance of drug delivery systems.

3.
Genes (Basel) ; 14(10)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37895296

RESUMO

The KN Motif and AnKyrin Repeat Domain 1 (KANK1) is proposed as a tumour suppressor gene, as its expression is reduced or absent in several types of tumour tissue, and over-expressing the protein inhibited the proliferation of tumour cells in solid cancer models. We report a novel germline loss of heterozygosity mutation encompassing the KANK1 gene in a young patient diagnosed with myelodysplastic neoplasm (MDS) with no additional disease-related genomic aberrations. To study the potential role of KANK1 in haematopoiesis, we generated a new transgenic mouse model with a confirmed loss of KANK1 expression. KANK1 knockout mice did not develop any haematological abnormalities; however, the loss of its expression led to alteration in the colony forming and proliferative potential of bone marrow (BM) cells and a decrease in hematopoietic stem and progenitor cells (HSPCs) population frequency. A comprehensive marker expression analysis of lineage cell populations indicated a role for Kank1 in lymphoid cell development, and total protein analysis suggests the involvement of Kank1 in BM cells' cytoskeleton formation and mobility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Repetição de Anquirina/genética , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças
4.
Acta Derm Venereol ; 102: adv00834, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36250733

RESUMO

Venous leg ulcers represent a clinical challenge and impair the quality of life of patients. This study examines impaired wound healing in venous leg ulcers at the molecular level. Protein expression patterns for biomarkers were analysed in venous leg ulcer wound fluids from 57 patients treated with a protease-modulating polyacrylate wound dressing for 12 weeks, and compared with exudates from 10 acute split-thickness wounds. Wound healing improved in the venous leg ulcer wounds: 61.4% of the 57 patients with venous leg ulcer achieved a relative wound area reduction of ≥ 40%, and 50.9% of the total 57 patients achieved a relative wound area reduction of ≥ 60%. Within the first 14 days, abundances of S100A8, S100A9, neutrophil elastase, matrix metalloproteinase-2, and fibronectin in venous leg ulcer exudates decreased significantly and remained stable, yet higher than in acute wounds. Interleukin-1ß, tumour necrosis factor alpha, and matrix metalloproteinase-9 abundance ranges were similar in venous leg ulcers and acute wound fluids. Collagen (I) α1 abundance was higher in venous leg ulcer wound fluids and was not significantly regulated. Overall, significant biomarker changes occurred in the first 14 days before a clinically robust healing response in the venous leg ulcer cohort.


Assuntos
Úlcera da Perna , Úlcera Varicosa , Humanos , Metaloproteinase 2 da Matriz , Peptídeo Hidrolases , Transplante de Pele , Qualidade de Vida , Úlcera Varicosa/diagnóstico , Úlcera Varicosa/terapia , Úlcera Varicosa/metabolismo , Úlcera da Perna/diagnóstico , Úlcera da Perna/terapia
5.
JCI Insight ; 7(18)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-35998057

RESUMO

Macrophages in the tumor microenvironment have a substantial impact on tumor progression. Depending on the signaling environment in the tumor, macrophages can either support or constrain tumor progression. It is therefore of therapeutic interest to identify the tumor-derived factors that control macrophage education. With this aim, we correlated the expression of A Disintegrin and Metalloproteinase (ADAM) proteases, which are key mediators of cell-cell signaling, to the expression of protumorigenic macrophage markers in human cancer cohorts. We identified ADAM17, a sheddase upregulated in many cancer types, as a protein of interest. Depletion of ADAM17 in cancer cell lines reduced the expression of several protumorigenic markers in neighboring macrophages in vitro as well as in mouse models. Moreover, ADAM17-/- educated macrophages demonstrated a reduced ability to induce cancer cell invasion. Using mass spectrometry-based proteomics and ELISA, we identified heparin-binding EGF (HB-EGF) and amphiregulin, shed by ADAM17 in the cancer cells, as the implicated molecular mediators of macrophage education. Additionally, RNA-Seq and ELISA experiments revealed that ADAM17-dependent HB-EGF ligand release induced the expression and secretion of CXCL chemokines in macrophages, which in turn stimulated cancer cell invasion. In conclusion, we provide evidence that ADAM17 mediates a paracrine EGFR-ligand-chemokine feedback loop, whereby cancer cells hijack macrophages to promote tumor progression.


Assuntos
Proteína ADAM17 , Desintegrinas , Macrófagos , Invasividade Neoplásica , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Anfirregulina , Animais , Fator de Crescimento Epidérmico , Receptores ErbB/metabolismo , Heparina , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Humanos , Ligantes , Macrófagos/metabolismo , Camundongos , Microambiente Tumoral
7.
mSystems ; 7(3): e0021922, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35430898

RESUMO

Cytoplasmic pH in bacteria is tightly regulated by diverse active mechanisms and interconnected regulatory processes. Many processes and regulators underlying pH homeostasis have been identified via phenotypic screening of strain libraries for nongrowth at low or high pH values. Direct screens with respect to changes of the internal pH in mutant strain collections are limited by laborious methods, which include fluorescent dyes and radioactive probes. Genetically encoded biosensors equip single organisms or strain libraries with an internal sensor molecule during the generation of the strain. Here, we used the pH-sensitive mCherry variant mCherryEA as a ratiometric pH biosensor. We visualized the internal pH of Escherichia coli colonies on agar plates by the use of a GelDoc imaging system. Combining this imaging technology with robot-assisted colony picking and spotting allowed us to screen and select mutants with altered internal pH values from a small transposon mutagenesis-derived E. coli library. Identification of the transposon (Tn) insertion sites in strains with altered internal pH levels revealed that the transposon was inserted into trkH (encoding a transmembrane protein of the potassium uptake system) or rssB (encoding the adaptor protein RssB, which mediates the proteolytic degradation of the general stress response regulator RpoS), two genes known to be associated with pH homeostasis and pH stress adaptation. This successful screening approach demonstrates that the pH sensor-based analysis of arrayed colonies on agar plates is a sensitive approach for the rapid identification of genes involved in pH homeostasis or pH stress adaptation in E. coli. IMPORTANCE Phenotypic screening of strain libraries on agar plates has become a versatile tool to understand gene functions and to optimize biotechnological platform organisms. Screening is supported by genetically encoded biosensors that allow to easily measure intracellular processes. For this purpose, transcription factor-based biosensors have emerged as the sensor type of choice. Here, the target stimulus initiates the activation of a response gene (e.g., a fluorescent protein), followed by transcription, translation, and maturation. Due to this mechanistic principle, biosensor readouts are delayed and cannot report the actual intracellular state of the cell in real time. To capture rapid intracellular processes adequately, fluorescent reporter proteins are extensively applied. However, these sensor types have not previously been used for phenotypic screenings. To take advantage of their properties, we established here an imaging method that allows application of a rapid ratiometric sensor protein for assessing the internal pH of colonies in a high-throughput manner.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Ensaios de Triagem em Larga Escala/métodos , Ágar/metabolismo , Biblioteca Gênica , Concentração de Íons de Hidrogênio , Canais de Potássio/genética , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Escherichia coli/genética
8.
Microb Biotechnol ; 15(4): 1133-1151, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34739747

RESUMO

Debaryomyces hansenii is a non-conventional yeast considered to be a well-suited option for a number of different industrial bioprocesses. It exhibits a set of beneficial traits (halotolerant, oleaginous, xerotolerant, inhibitory compounds resistant) which translates to a number of advantages for industrial fermentation setups when compared to traditional hosts. Although D. hansenii has been highly studied during the last three decades, especially in regards to its salt-tolerant character, the molecular mechanisms underlying this natural tolerance should be further investigated in order to broadly use this yeast in biotechnological processes. In this work, we performed a series of chemostat cultivations in controlled bioreactors where D. hansenii (CBS 767) was grown in the presence of either 1M NaCl or KCl and studied the transcriptomic and (phospho)proteomic profiles. Our results show that sodium and potassium trigger different responses at both expression and regulation of protein activity levels and also complemented previous reports pointing to specific cellular processes as key players in halotolerance, moreover providing novel information about the specific genes involved in each process. The phosphoproteomic analysis, the first of this kind ever reported in D. hansenii, also implicated a novel and yet uncharacterized cation transporter in the response to high sodium concentrations.


Assuntos
Debaryomyces , Debaryomyces/genética , Transporte de Íons , Potássio/metabolismo , Proteômica , Sódio/metabolismo
9.
Nat Commun ; 12(1): 3341, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099695

RESUMO

Large-scale single-cell analyses are of fundamental importance in order to capture biological heterogeneity within complex cell systems, but have largely been limited to RNA-based technologies. Here we present a comprehensive benchmarked experimental and computational workflow, which establishes global single-cell mass spectrometry-based proteomics as a tool for large-scale single-cell analyses. By exploiting a primary leukemia model system, we demonstrate both through pre-enrichment of cell populations and through a non-enriched unbiased approach that our workflow enables the exploration of cellular heterogeneity within this aberrant developmental hierarchy. Our approach is capable of consistently quantifying ~1000 proteins per cell across thousands of individual cells using limited instrument time. Furthermore, we develop a computational workflow (SCeptre) that effectively normalizes the data, integrates available FACS data and facilitates downstream analysis. The approach presented here lays a foundation for implementing global single-cell proteomics studies across the world.


Assuntos
Proteômica/métodos , Análise de Célula Única/métodos , Humanos , Leucemia Mieloide Aguda , Espectrometria de Massas , Células-Tronco Neoplásicas , Proteoma/metabolismo , RNA , Fluxo de Trabalho
10.
Matrix Biol ; 96: 47-68, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33246101

RESUMO

Identification of early processes leading to complex tissue pathologies, such as inflammatory bowel diseases, poses a major scientific and clinical challenge that is imperative for improved diagnosis and treatment. Most studies of inflammation onset focus on cellular processes and signaling molecules, while overlooking the environment in which they take place, the continuously remodeled extracellular matrix. In this study, we used colitis models for investigating extracellular-matrix dynamics during disease onset, while treating the matrix as a complete and defined entity. Through the analysis of matrix structure, stiffness and composition, we unexpectedly revealed that even prior to the first clinical symptoms, the colon displays its own unique extracellular-matrix signature and found specific markers of clinical potential, which were also validated in human subjects. We also show that the emergence of this pre-symptomatic matrix is mediated by subclinical infiltration of immune cells bearing remodeling enzymes. Remarkably, whether the inflammation is chronic or acute, its matrix signature converges at pre-symptomatic states. We suggest that the existence of a pre-symptomatic extracellular-matrix is general and relevant to a wide range of diseases.


Assuntos
Biomarcadores/metabolismo , Colite Ulcerativa/patologia , Matriz Extracelular/patologia , Interleucina-10/genética , Animais , Estudos de Casos e Controles , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Feminino , Técnicas de Silenciamento de Genes , Humanos , Aprendizado de Máquina , Masculino , Camundongos , Piroxicam/efeitos adversos , Prognóstico , Proteômica
11.
Cell Rep ; 30(7): 2106-2114.e5, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075755

RESUMO

Ribosome-associated quality control (RQC) disassembles aberrantly stalled translation complexes to recycle or degrade the constituent parts. A key step of RQC is the cleavage of P-site tRNA by the endonuclease ANKZF1 (Vms1 in yeast) to release incompletely synthesized polypeptides from ribosomes for degradation. Re-use of the cleaved tRNA for translation requires re-addition of the universal 3'CCA nucleotides removed by ANKZF1. Here, we show that ELAC1 is both necessary and sufficient to remove the 2',3'-cyclic phosphate on ANKZF1-cleaved tRNAs to permit CCA re-addition by TRNT1. ELAC1 activity is optimized for tRNA recycling, whereas ELAC2, the essential RNase Z isoform in eukaryotes, is required to remove 3' trailers during tRNA biogenesis. Cells lacking ELAC1 specifically accumulate unrepaired tRNA intermediates upon the induction of ribosome stalling. Thus, optimal recycling of ANKZF1-cleaved tRNAs in vertebrates is achieved through the duplication and specialization of a conserved tRNA biosynthesis enzyme.


Assuntos
RNA de Transferência/metabolismo , Ribossomos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Humanos , Biossíntese de Proteínas , Controle de Qualidade , RNA de Transferência/genética , Ribossomos/genética , Proteínas Supressoras de Tumor/genética
12.
Biochim Biophys Acta Proteins Proteom ; 1868(6): 140392, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32087360

RESUMO

The biological activity of a protein is regulated at many levels ranging from control of transcription and translation to post-translational modifications (PTM). Proteolytic processing is an irreversible PTM generating novel isoforms of a mature protein termed proteoforms. Proteoform dynamics is a major focus of current proteome research, since it has been associated with many pathological conditions. Mass-spectrometry (MS)-based proteomics and PTM-specific enrichment workflows have become the methods of choice to study proteoforms in vitro and in vivo. Here, we give an overview of currently available MS-based degradomics methods and outline how they can be optimally applied to study protease cleavage events. We discuss the advantages and disadvantages of selected approaches and describe state-of-the-art improvements in degradomics technologies. By introducing the concept of combinatorial degradomics, a combination of global discovery degradomics and highly sensitive targeted degradomics, we demonstrate how MS-based degradomics further evolves as a powerful tool in biomedical protease research.


Assuntos
Espectrometria de Massas/métodos , Proteólise , Proteoma/metabolismo , Proteômica/métodos , Animais , Biomarcadores , Pesquisa Biomédica , Humanos , Peptídeo Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional
13.
Methods Mol Biol ; 2043: 285-296, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31463921

RESUMO

Proteases play pivotal roles in multiple biological processes in all living organisms and are tightly regulated under normal conditions, but alterations in the proteolytic system and uncontrolled protease activity result in multiple pathological conditions. A disease will most often be defined by an ensemble of cleavage events-a proteolytic signature, thus the system-wide study of protease substrates has gained significant attention and identification of disease specific clusters of protease substrates holds great promise as targets for diagnostics and therapy.In this chapter we describe a method that enables fast and reproducible analysis of protease substrates and proteolytic products in an amount of tissue less than the quantity obtained by a standard biopsy. The method combines tissue disruption and protein extraction by pressure cycling technology (PCT), N-terminal enrichment by tandem mass tag (TMT)-terminal amine isotopic labeling of substrates (TAILS), peptide analysis by mass spectrometry (MS), and a general pipeline for interpretation of the data.


Assuntos
Marcação por Isótopo/métodos , Peptídeo Hidrolases/metabolismo , Proteoma/análise , Animais , Biópsia , Humanos , Processamento de Proteína Pós-Traducional , Proteólise , Especificidade por Substrato , Espectrometria de Massas em Tandem
14.
J Invest Dermatol ; 138(2): 413-422, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28899681

RESUMO

Impaired cutaneous wound healing is a major complication in elderly people and patients suffering from diabetes, the rate of which is rising in industrialized countries. Heterogeneity of clinical manifestations hampers effective molecular diagnostics and decisions for appropriate therapeutic regimens. Using a customized positional quantitative proteomics workflow, we have established a time-resolved proteome and N-terminome resource from wound exudates in a clinically relevant pig wound model that we exploited as a robust template to interpret a heterogeneous dataset from patients undergoing the same wound treatment. With zyxin, IQGA1, and HtrA1, this analysis and validation by targeted proteomics identified differential abundances and proteolytic processing of proteins of epidermal and dermal origin as prospective biomarker candidates for assessment of critical turning points in wound progression. Thus, we show the possibility of using a fine-tuned animal wound model to bridge the translational gap as a prerequisite for future extended clinical studies with large cohorts of individuals affected by healing impairments. Data are available via ProteomeXchange with identifier PXD006674.


Assuntos
Proteoma/metabolismo , Proteômica/métodos , Pele/lesões , Cicatrização/fisiologia , Ferimentos e Lesões/fisiopatologia , Animais , Biomarcadores/metabolismo , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Progressão da Doença , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Tratamento de Ferimentos com Pressão Negativa , Estudos Prospectivos , Processamento de Proteína Pós-Traducional , Proteólise , Pele/fisiopatologia , Suínos , Ferimentos e Lesões/terapia , Zixina/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo
15.
Biol Chem ; 399(1): 47-54, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28850541

RESUMO

Targeted degradomics integrates positional information into mass spectrometry (MS)-based targeted proteomics workflows and thereby enables analysis of proteolytic cleavage events with unprecedented specificity and sensitivity. Rapid progress in the establishment of protease-substrate relations provides extensive degradomics target lists that now can be tested with help of selected and parallel reaction monitoring (S/PRM) in complex biological systems, where proteases act in physiological environments. In this minireview, we describe the general principles of targeted degradomics, outline the generic experimental workflow of the methodology and highlight recent and future applications in protease research.


Assuntos
Peptídeo Hidrolases/metabolismo , Proteólise , Proteômica/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...