Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 9(8): 4106-4112, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35520181

RESUMO

The performance of organic solar cells (OSCs) depends crucially on the morphology in bulk heterojunctions (BHJs), including the degree of crystallinity of the polymer and the amount of each material phase: aggregated donor, aggregated acceptor, and molecular mixed donor : acceptor phase. In this paper, we report the BHJ morphology of as-cast blend films incorporating the polymer PIPCP as the donor and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as the acceptor. Tracking the scattering intensity of PC61BM as a function of PC61BM concentration shows that PC61BM aggregates into donor-rich domains and there is little to no phase where the PC61BM and PIPCP are intimately mixed. We further find that on blending the scattering peak due to PIPCP ordering along the backbone increases with decreasing PIPCP fraction, which is attributed to improved ordering of PIPCP due to the presence of PC61BM. Our results suggest that the improved ordering of PIPCP along the backbone (consistent with an increased conjugation length) with blending contributes to the observed low open-circuit voltage energy loss.

2.
iScience ; 2: 182-192, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-30428374

RESUMO

There is considerable interest in improving the performance of organic optoelectronic devices through processing techniques. Here, we study the effect of high-temperature annealing on the properties of the semiconducting polymer PTB7 and PTB7:fullerene blends, of interest as efficient organic photovoltaic (OPV) devices. Annealing to moderate temperature improves the PTB7 morphology and optoelectronic properties. High-temperature annealing also improves morphology but results in poorer optoelectronic properties. This is a result of side chain cleavage that creates by-products that act as trap states, increasing electronic disorder and decreasing mobility. We further observe changes to the PTB7 chemical structure after thermal cleavage that are similar to those following solar irradiation. This implies that side chain cleavage is an important mechanism in device photodegradation, which is a major "burn-in" loss mechanism in OPV. These results lend insight into side chain cleavage as a method of improving optoelectronic properties and suggest strategies for improvement in device photostability.

3.
ACS Appl Mater Interfaces ; 10(29): 24665-24678, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29932630

RESUMO

Additives play an important role in modifying the morphology and phase separation of donor and acceptor molecules in bulk heterojunction (BHJ) solar cells. Here, we report triptycene (TPC) as a small-molecule additive for supramolecular control of phase separation and concomitant improvement of the power conversion efficiency (PCE) of PTB7 donor and fullerene acceptor-based BHJ polymer solar cells. An overall 60% improvement in PCE is observed for both PTB7:PC61BM and PTB7:PC71BM blends. The improved photovoltaic (PV) performance can be attributed to three factors: (a) TPC-induced supramolecular interactions with donor:acceptor components in the blends to realize a nanoscale phase-separated morphology; (b) an increase in the charge transfer state energy that lowers the driving force for electron transfer from donor to acceptor molecules; and (c) an increase in the charge carrier mobility. An improvement in efficiency using TPC as a supramolecular additive has also been demonstrated for other BHJ blends such as PBDB-T:PC71BM and P3HT:PCBM, implying the wide applicability of this new additive molecule. A comparison of the photostability of TPC as an additive for PTB7:PCBM solar cells to that of the widely used 1,8-diiodooctane additive shows ∼30% higher retention of PV performance for the TPC-added solar cells after 34 h of AM 1.5G illumination. The results obtained suggest that the approach of using additives that can promote supramolecular interactions to modify the length scale of phase separation between donor and acceptor is very promising and can lead to the development of highly efficient and stable organic photovoltaics.

4.
Dev Cell ; 44(1): 97-112.e7, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29275994

RESUMO

Lipid droplet (LD) functions are regulated by a complement of integral and peripheral proteins that associate with the bounding LD phospholipid monolayer. Defining the composition of the LD proteome has remained a challenge due to the presence of contaminating proteins in LD-enriched buoyant fractions. To overcome this limitation, we developed a proximity labeling strategy that exploits LD-targeted APEX2 to biotinylate LD proteins in living cells. Application of this approach to two different cell types identified the vast majority of previously validated LD proteins, excluded common contaminating proteins, and revealed new LD proteins. Moreover, quantitative analysis of LD proteome dynamics uncovered a role for endoplasmic reticulum-associated degradation in controlling the composition of the LD proteome. These data provide an important resource for future LD studies and demonstrate the utility of proximity labeling to study the regulation of LD proteomes.


Assuntos
Biomarcadores/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Gotículas Lipídicas/metabolismo , Proteoma/metabolismo , Coloração e Rotulagem/métodos , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Proteoma/análise , Receptores do Fator Autócrino de Motilidade/metabolismo
5.
Nat Commun ; 8(1): 79, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724989

RESUMO

A long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics-however, the results have important implications on the operation of all optoelectronic devices with donor/acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting in larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation.Molecular orientation profoundly affects the performance of donor-acceptor heterojunctions, whilst it has remained challenging to investigate the detail. Using a controllable interface, Ran et al. show that the edge-on geometries improve charge generation at the cost of non-radiative recombination loss.

6.
Phys Chem Chem Phys ; 19(19): 12441-12451, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28470282

RESUMO

The influence of various processing conditions on the singlet exciton diffusion is explored in films of a conjugated random copolymer poly-(3-hexylthiophene-co-3-dodecylthiophene) (P3HT-co-P3DDT) and correlated with the degree of crystallinity probed by grazing incidence X-ray scattering and with exciton bandwidth determined from absorption spectra. The exciton diffusion coefficient is deduced from exciton-exciton annihilation measurements and is found to increase by more than a factor of three when thin films are annealed using CS2 solvent vapour. A doubling of exciton diffusion coefficient is observed upon melt annealing at 200 °C and the corresponding films show about 50% enhancement in the degree of crystallinity. In contrast, films fabricated from polymer solutions containing a small amount of either solvent additive or nucleating agent show a decrease in exciton diffusion coefficient possibly due to formation of traps for excitons. Our results suggest that the enhancement of exciton diffusivity occurs because of increased crystallinity of alkyl-stacking and longer conjugation of aggregated chains which reduces the exciton bandwidth.

7.
FEBS J ; 281(7): 1726-37, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24494857

RESUMO

Guanine quadruplexes (GQ) are four-stranded DNA structures formed by guanine-rich DNA sequences. The formation of GQs inhibits cancer cell growth, although the detection of GQs in vivo has proven difficult, in part because of their structural diversity. The development of GQ-selective fluorescent reporters would enhance our ability to quantify the number and location of GQs, ultimately advancing biological studies of quadruplex relevance and function. N-methylmesoporphyrin IX (NMM) interacts selectively with parallel-stranded GQs; in addition, its fluorescence is sensitive to the presence of DNA, making this ligand a possible candidate for a quadruplex probe. In the present study, we investigated the effect of DNA secondary structure on NMM fluorescence. We found that NMM fluorescence increases by about 60-fold in the presence of parallel-stranded GQs and by about 40-fold in the presence of hybrid GQs. Antiparallel GQs lead to lower than 10-fold increases in NMM fluorescence. Single-stranded DNA, duplex, or i-motif, induce no change in NMM fluorescence. We conclude that NMM shows promise as a 'turn-on' fluorescent probe for detecting quadruplex structures, as well as for differentiating them on the basis of strand orientation.


Assuntos
Corantes Fluorescentes/química , Quadruplex G , Mesoporfirinas/química , DNA de Cadeia Simples/química , Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...