Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 12: 737276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858326

RESUMO

Type 1 diabetes (T1D) is a disease that arises due to complex immunogenetic mechanisms. Key cell-cell interactions involved in the pathogenesis of T1D are activation of autoreactive T cells by dendritic cells (DC), migration of T cells across endothelial cells (EC) lining capillary walls into the islets of Langerhans, interaction of T cells with macrophages in the islets, and killing of ß-cells by autoreactive CD8+ T cells. Overall, pathogenic cell-cell interactions are likely regulated by the individual's collection of genetic T1D-risk variants. To accurately model the role of genetics, it is essential to build systems to interrogate single candidate genes in isolation during the interactions of cells that are essential for disease development. However, obtaining single-donor matched cells relevant to T1D is a challenge. Sourcing these genetic variants from human induced pluripotent stem cells (iPSC) avoids this limitation. Herein, we have differentiated iPSC from one donor into DC, macrophages, EC, and ß-cells. Additionally, we also engineered T cell avatars from the same donor to provide an in vitro platform to study genetic influences on these critical cellular interactions. This proof of concept demonstrates the ability to derive an isogenic system from a single donor to study these relevant cell-cell interactions. Our system constitutes an interdisciplinary approach with a controlled environment that provides a proof-of-concept for future studies to determine the role of disease alleles (e.g. IFIH1, PTPN22, SH2B3, TYK2) in regulating cell-cell interactions and cell-specific contributions to the pathogenesis of T1D.


Assuntos
Linfócitos T CD8-Positivos/patologia , Diabetes Mellitus Tipo 1/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Diferenciação Celular/fisiologia , Humanos , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia
2.
Cell Immunol ; 358: 104224, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33068914

RESUMO

Type 1 Diabetes (T1D) is an autoimmune disease marked by direct elimination of insulin-producing ß cells by autoreactive T effectors. Recent T1D clinical trials utilizing autologous Tregs transfers to restore immune balance and improve disease has prompted us to design a novel Tregs-based antigen-specific T1D immunotherapy. We engineered a Chimeric Antigen Receptor (CAR) expressing a single-chain Fv recognizing the human pancreatic endocrine marker, HPi2. Human T cells, transduced with the resultant HPi2-CAR, proliferated and amplified Granzyme B accumulation when co-cultured with human, but not mouse ß cells. Furthermore, following exposure of HPi2-CAR transduced cells to islets, CD8+ lymphocytes demonstrated enhanced CD107a (LAMP-1) expression, while CD4+ cells produced increased levels of IL-2. HPi2-CAR Tregs failed to maintain expansion due to a persistent tonic signaling from the CAR engagement to unexpectantly HPi2 antigen present on Tregs. Overall, we show lack of functionality of HPi2-CAR and highlight the importance of careful selection of CAR recognition driver for the sustainable activity and expandability of engineered T cells.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Protaminas/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Humanos , Tolerância Imunológica/imunologia , Imunoterapia Adotiva/métodos , Ilhotas Pancreáticas , Pâncreas/citologia , Pâncreas/metabolismo , Protaminas/metabolismo , Engenharia de Proteínas/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo
3.
Mol Ther ; 26(1): 184-198, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28988715

RESUMO

Type 1 diabetes (T1D) is characterized by massive destruction of insulin-producing ß cells by autoreactive T lymphocytes, arising via defective immune tolerance. Therefore, effective anti-T1D therapeutics should combine autoimmunity-preventing and insulin production-restoring properties. We constructed a cell-permeable PDX1-FOXP3-TAT fusion protein (FP) composed of two transcription factors: forkhead box P3 (FOXP3), the master regulator of differentiation and functioning of self-tolerance-promoting Tregs, and pancreatic duodenal homeobox-1 (PDX1), the crucial factor supporting ß cell development and maintenance. The FP was tested in vitro and in a non-obese diabetic mouse T1D model. In vitro, FP converted naive CD4+ T cells into a functional "Treg-like" subset, which suppressed cytokine secretion, downregulated antigen-specific responses, and curbed viability of diabetogenic effector cells. In hepatic stem-like cells, FP potentiated endocrine transdifferentiation, inducing expression of Insulin2 and other ß lineage-specific genes. In vivo, FP administration to chronically diabetic mice triggered (1) a significant elevation of insulin and C-peptide levels, (2) the formation of insulin-containing cell clusters in livers, and (3) a systemic anti-inflammatory shift (higher Foxp3+CD4+CD25+ T cell frequencies, elevated rates of IL-10-producing cells, and reduced rates of IFN-γ-secreting cells). Overall, in accordance with its design, PDX1-FOXP3-TAT FP delivered both Treg-stabilizing anti-autoimmune and de novo insulin-producing effects, proving its anti-T1D therapeutic potential.


Assuntos
Autoimunidade , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Homeodomínio/metabolismo , Secreção de Insulina , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transativadores/metabolismo , Animais , Microambiente Celular/imunologia , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/genética , Hepatócitos/metabolismo , Proteínas de Homeodomínio/genética , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Fenótipo , Ligação Proteica , Proteínas Recombinantes de Fusão , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transativadores/genética
4.
PLoS One ; 12(10): e0186426, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023576

RESUMO

OBJECTIVE: Overexpression of tissue-nonspecific alkaline phosphatase (TNAP) in endothelium leads to arterial calcification in mice. The purpose of this study was to examine the effect of elevated endothelial TNAP on coronary atherosclerosis. In addition, we aimed to examine endogenous TNAP activity in human myocardium. APPROACH AND RESULTS: A vascular pattern of TNAP activity was observed in human non-failing, ischemic, and idiopathic dilated hearts (5 per group); no differences were noted between groups in this study. Endothelial overexpression of TNAP was achieved in mice harboring a homozygous recessive mutation in the low density lipoprotein receptor (whc allele) utilizing a Tie2-cre recombinase (WHC-eTNAP mice). WHC-eTNAP developed significant coronary artery calcification at baseline compared WHC controls (4312 vs 0µm2 alizarin red area, p<0.001). Eight weeks after induction of atherosclerosis, lipid deposition in the coronary arteries of WHC-eTNAP was increased compared to WHC controls (121633 vs 9330µm2 oil red O area, p<0.05). Coronary lesions in WHC-eTNAP mice exhibited intimal thickening, calcifications, foam cells, and necrotic cores. This was accompanied by the reduction in body weight and left ventricular ejection fraction (19.5 vs. 23.6g, p<0.01; 35% vs. 47%, p<0.05). In a placebo-controlled experiment under atherogenic conditions, pharmacological inhibition of TNAP in WHC-eTNAP mice by a specific inhibitor SBI-425 (30mg*kg-1*d-1, for 5 weeks) reduced coronary calcium (78838 vs.144622µm2) and lipids (30754 vs. 77317µm2); improved body weight (22.4 vs.18.8g) and ejection fraction (59 vs. 47%). The effects of SBI-425 were significant in the direct comparisons with placebo but disappeared after TNAP-negative placebo-treated group was included in the models as healthy controls. CONCLUSIONS: Endogenous TNAP activity is present in human cardiac tissues. TNAP overexpression in vascular endothelium in mice leads to an unusual course of coronary atherosclerosis, in which calcification precedes lipid deposition. The prevalence and significance of this mechanism in human atherosclerosis requires further investigations.


Assuntos
Fosfatase Alcalina/metabolismo , Doença da Artéria Coronariana/etiologia , Hiperlipoproteinemia Tipo II/patologia , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/genética , Animais , Análise Química do Sangue , Peso Corporal/efeitos dos fármacos , Calcificação Fisiológica , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Citocinas/sangue , Dieta Aterogênica , Modelos Animais de Doenças , Ecocardiografia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/enzimologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Inibidores Enzimáticos/farmacologia , Humanos , Hiperlipoproteinemia Tipo II/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/enzimologia , Miocárdio/metabolismo , Miocárdio/patologia , Efeito Placebo , Receptores de LDL/genética , Função Ventricular Esquerda/efeitos dos fármacos
5.
J Immunol ; 196(4): 1495-506, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26773144

RESUMO

Ag-specific activation of T cells is an essential process in the control of effector immune responses. Defects in T cell activation, particularly in the costimulation step, have been associated with many autoimmune conditions, including type 1 diabetes (T1D). Recently, we demonstrated that the phenotype of impaired negative costimulation, due to reduced levels of V-set domain-containing T cell activation inhibitor 1 (VTCN1) protein on APCs, is shared between diabetes-susceptible NOD mice and human T1D patients. In this study, we show that a similar process takes place in the target organ, as both α and ß cells within pancreatic islets gradually lose their VTCN1 protein during autoimmune diabetes development despite upregulation of the VTCN1 gene. Diminishment of functional islet cells' VTCN1 is caused by the active proteolysis by metalloproteinase N-arginine dibasic convertase 1 (NRD1) and leads to the significant induction of proliferation and cytokine production by diabetogenic T cells. Inhibition of NRD1 activity, alternatively, stabilizes VTCN1 and dulls the anti-islet T cell responses. Therefore, we suggest a general endogenous mechanism of defective VTCN1 negative costimulation, which affects both lymphoid and peripheral target tissues during T1D progression and results in aggressive anti-islet T cell responses. This mechanism is tied to upregulation of NRD1 expression and likely acts in two synergistic proteolytic modes: cell-intrinsic intracellular and cell-extrinsic systemic. Our results highlight an importance of VTCN1 stabilization on cell surfaces for the restoration of altered balance of immune control during T1D.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Ilhotas Pancreáticas/imunologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/imunologia , Animais , Apresentação de Antígeno , Citocinas/biossíntese , Diabetes Mellitus Tipo 1/fisiopatologia , Células Secretoras de Glucagon/imunologia , Humanos , Células Secretoras de Insulina/imunologia , Ilhotas Pancreáticas/metabolismo , Ativação Linfocitária , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos Endogâmicos NOD , Proteólise , Linfócitos T/imunologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo
6.
J Am Heart Assoc ; 4(12)2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26675253

RESUMO

BACKGROUND: Ectopic vascular calcification is a common condition associated with aging, atherosclerosis, diabetes, and/or chronic kidney disease. Smooth muscle cells are the best characterized source of osteogenic progenitors in the vasculature; however, recent studies suggest that cells of endothelial origin can also promote calcification. To test this, we sought to increase the osteogenic potential of endothelial cells by overexpressing tissue-nonspecific alkaline phosphatase (TNAP), a key enzyme that regulates biomineralization, and to determine the pathophysiological effect of endothelial TNAP on vascular calcification and cardiovascular function. METHODS AND RESULTS: We demonstrated previously that mice transgenic for ALPL (gene encoding human TNAP) develop severe arterial medial calcification and reduced viability when TNAP is overexpressed in smooth muscle cells. In this study, we expressed the ALPL transgene in endothelial cells following endothelial-specific Tie2-Cre recombination. Mice with endothelial TNAP overexpression survived well into adulthood and displayed generalized arterial calcification. Genes associated with osteochondrogenesis (Runx2, Bglap, Spp1, Opg, and Col2a1) were upregulated in the aortas of endothelial TNAP animals compared with controls. Lesions in coronary arteries of endothelial TNAP mice showed immunoreactivity to Runx2, osteocalcin, osteopontin, and collagen II as well as increased deposition of sialoproteins revealed by lectin staining. By 23 weeks of age, endothelial TNAP mice developed elevated blood pressure and compensatory left ventricular hypertrophy with preserved ejection fraction. CONCLUSIONS: This study presented a novel genetic model demonstrating the osteogenic potential of TNAP-positive endothelial cells in promoting pathophysiological vascular calcification.


Assuntos
Fosfatase Alcalina/metabolismo , Calcinose/metabolismo , Endotélio Vascular/metabolismo , Doença Arterial Periférica/metabolismo , Animais , Calcinose/etiologia , Calcinose/patologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Doença Arterial Periférica/etiologia , Doença Arterial Periférica/patologia , Reação em Cadeia da Polimerase em Tempo Real
7.
PLoS One ; 9(9): e107213, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25259810

RESUMO

The kallikrein-kinin system (KKS) comprises a cascade of proteolytic enzymes and biogenic peptides that regulate several physiological processes. Over-expression of tissue kallikrein-1 and modulation of the KKS shows beneficial effects on insulin sensitivity and other parameters relevant to type 2 diabetes mellitus. However, much less is known about the role of kallikreins, in particular tissue kallikrein-1, in type 1 diabetes mellitus (T1D). We report that chronic administration of recombinant human tissue kallikrein-1 protein (DM199) to non-obese diabetic mice delayed the onset of T1D, attenuated the degree of insulitis, and improved pancreatic beta cell mass in a dose- and treatment frequency-dependent manner. Suppression of the autoimmune reaction against pancreatic beta cells was evidenced by a reduction in the relative numbers of infiltrating cytotoxic lymphocytes and an increase in the relative numbers of regulatory T cells in the pancreas and pancreatic lymph nodes. These effects may be due in part to a DM199 treatment-dependent increase in active TGF-beta1. Treatment with DM199 also resulted in elevated C-peptide levels, elevated glucagon like peptide-1 levels and a reduction in dipeptidyl peptidase-4 activity. Overall, the data suggest that DM199 may have a beneficial effect on T1D by attenuating the autoimmune reaction and improving beta cell health.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/imunologia , Imunomodulação/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Calicreínas Teciduais/farmacologia , Animais , Autoimunidade/efeitos dos fármacos , Biomarcadores , Glicemia/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Feminino , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Proteínas Recombinantes/administração & dosagem , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Calicreínas Teciduais/administração & dosagem , Fator de Crescimento Transformador beta1/metabolismo
8.
PLoS One ; 9(8): e103981, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25100328

RESUMO

Modulation of the kallikrein-kinin system (KKS) has been shown to have beneficial effects on glucose homeostasis and several other physiological responses relevant to the progression of type 2 diabetes mellitus (T2D). The importance of bradykinin and its receptors in mediating these responses is well documented, but the role of tissue kallikrein-1, the protease that generates bradykinin in situ, is much less understood. We developed and tested DM199, recombinant human tissue kallikrein-1 protein (rhKLK-1), as a potential novel therapeutic for T2D. Hyperinsulinemic-euglycemic clamp studies suggest that DM199 increases whole body glucose disposal in non-diabetic rats. Single-dose administration of DM199 in obese db/db mice and ZDF rats, showed an acute, dose-dependent improvement in whole-body glucose utilization. Sub-acute dosing for a week in ZDF rats improved glucose utilization, with a concomitant rise in fasting insulin levels and HOMA1-%B scores. After cessation of sub-acute dosing, fasting blood glucose levels were significantly lower in ZDF rats during a drug wash-out period. Our studies show for the first time that DM199 administration results in acute anti-hyperglycemic effects in several preclinical models, and demonstrate the potential for further development of DM199 as a novel therapeutic for T2D.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacocinética , Calicreínas Teciduais/farmacologia , Animais , Glicemia , Células CHO , Cricetinae , Cricetulus , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 2/sangue , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Masculino , Camundongos , Camundongos Obesos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Fatores de Tempo
9.
Diabetes ; 63(10): 3470-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24848066

RESUMO

T-cell responses directed against insulin-secreting pancreatic ß-cells are the key events highlighting type 1 diabetes (T1D). Therefore, a defective control of T-cell activation is thought to underlie T1D development. Recent studies implicated a B7-like negative costimulatory protein, V-set domain-containing T-cell activation inhibitor-1 (VTCN1), as a molecule capable of inhibiting T-cell activation and, potentially, an important constituent in experimental models of T1D. Here, we unravel a general deficiency within the VTCN1 pathway that is shared between diabetes-prone mice and a subset of T1D patients. Gradual loss of membrane-tethered VTCN1 from antigen-presenting cells combined with an increased release of soluble VTCN1 (sVTCN1) occurs in parallel to natural T1D development, potentiating hyperproliferation of diabetogenic T cells. Mechanistically, we demonstrate that the loss of membrane-tethered VTCN1 is linked to proteolytic cleavage mediated by the metalloproteinase nardilysin. The cleaved sVTCN1 fragment was detected at high levels in the peripheral blood of 53% T1D patients compared with only 9% of the healthy subjects. Elevated blood sVTCN1 levels appeared early in the disease progression and correlated with the aggressive pace of disease, highlighting the potential use of sVTCN1 as a new T1D biomarker, and identifying nardilysin as a potential therapeutic target.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Metaloendopeptidases/metabolismo , Transdução de Sinais/fisiologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Adolescente , Adulto , Animais , Biomarcadores/metabolismo , Criança , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Linfócitos T/metabolismo , Adulto Jovem
10.
Exp Ther Med ; 5(2): 438-442, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23403478

RESUMO

This study tested the hypothesis that membrane-tethered type-1 matrix metalloproteinase (MT1-MMP)-induced proteolysis of T cell CD44 is important for defining the migration and function of autoreactive T cells, including diabetogenic, insulin-specific and K(d)-restricted IS-CD8(+) cells. To confirm the importance of MT1-MMP proteolysis of CD44 in type 1 diabetes (T1D), the anti-diabetic effects of three MMP inhibitors (3(S)-2,2-dimethyl-4[4-pyridin-4-yloxy-benzenesulfonyl]-thiomorpholine-3-carboxylic acid hydroxamate [AG3340], 2-(4-phenoxyphenylsulfonylmethyl) thiirane [SB-3CT] and epigallocatechin-3-gallate [EGCG]) were compared using an adoptive diabetes transfer model in non-obese diabetic (NOD) mice. Only AG3340 was capable of inhibiting both the activity of MT1-MMP and the shedding of CD44 in T cells; and the transendothelial migration and homing of IS-CD8(+) T cells into the pancreatic islets. SB-3CT and EGCG were incapable of inhibiting T cell MT1-MMP efficiently. As a result, AG3340 alone, but not SB-3CT or EGCG, delayed the onset of transferred diabetes in NOD mice. In summary, the results of the present study emphasize that the MT1-MMP-CD44 axis has a unique involvement in T1D development. Accordingly, we suggest that a potent small-molecule MT1-MMP antagonist is required for the design of novel therapies for T1D.

11.
Drug Discov Today ; 15(13-14): 531-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20685342

RESUMO

Pathogenesis of type 1 diabetes involves the activation of autoimmune T cells, consequent homing of activated lymphocytes to the pancreatic islets and ensuing destruction of insulin-producing b cells. Interaction between activated lymphocytes and endothelial cells in the islets is the hallmark of the homing process. Initial adhesion, firm adhesion and diapedesis of lymphocytes are the three crucial steps involved in the homing process. Cell-surface receptors including integrins, selectins and hyaluronate receptor CD44 mediate the initial steps of homing. Diapedesis relies on a series of proteolytic events mediated by matrix metalloproteinases. Here, molecular mechanisms governing transendothelial migration of the diabetogenic effector cells are discussed and resulting pharmacological strategies are considered.


Assuntos
Autoimunidade/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/fisiopatologia , Hipoglicemiantes/farmacologia , Ilhotas Pancreáticas/fisiopatologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/prevenção & controle , Humanos , Hipoglicemiantes/uso terapêutico
12.
J Biol Chem ; 284(44): 30615-26, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19726693

RESUMO

Multiple sclerosis (MS) is a disease of the central nervous system with autoimmune etiology. Susceptibility to MS is linked to viral and bacterial infections. Matrix metalloproteinases (MMPs) play a significant role in the fragmentation of myelin basic protein (MBP) and demyelination. The splice variants of the single MBP gene are expressed in the oligodendrocytes of the central nervous system (classic MBP) and in the immune cells (Golli-MBPs). Our data suggest that persistent inflammation caused by environmental risk factors is a step to MS. We have discovered biochemical evidence suggesting the presence of the inflammatory proteolytic pathway leading to MS. The pathway involves the self-activated furin and PC2 proprotein convertases and membrane type-6 MMP (MT6-MMP/MMP-25) that is activated by furin/PC2. These events are followed by MMP-25 proteolysis of the Golli-MBP isoforms in the immune system cells and stimulation of the specific autoimmune T cell clones. It is likely that the passage of these autoimmune T cell clones through the disrupted blood-brain barrier to the brain and the recognition of neuronal, classic MBP causes inflammation leading to the further up-regulation of the activity of the multiple individual MMPs, the massive cleavage of MBP in the brain, demyelination, and MS. In addition to the cleavage of Golli-MBPs, MMP-25 proteolysis readily inactivates crystallin alphaB that is a suppressor of MS. These data suggest that MMP-25 plays an important role in MS pathology and that MMP-25, especially because of its restricted cell/tissue expression pattern and cell surface/lipid raft localization, is a promising drug target in MS.


Assuntos
Células Apresentadoras de Antígenos/patologia , Encéfalo/imunologia , Inflamação/enzimologia , Metaloproteinases da Matriz Associadas à Membrana/metabolismo , Esclerose Múltipla/etiologia , Pró-Proteína Convertases/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Encéfalo/enzimologia , Encéfalo/patologia , Proteínas Ligadas por GPI , Humanos , Inflamação/etiologia , Metaloproteinases da Matriz Associadas à Membrana/genética , Microdomínios da Membrana , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Proteína Básica da Mielina/metabolismo , Transdução de Sinais , Distribuição Tecidual , Regulação para Cima
13.
Mol Cancer Ther ; 8(6): 1515-25, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19509255

RESUMO

Successful cancer therapies aim to induce selective apoptosis in neoplastic cells. The current suboptimal efficiency and selectivity drugs have therapeutic limitations and induce concomitant side effects. Recently, novel cancer therapies based on the use of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have emerged. TRAIL, a key component of the natural antitumor immune response, selectively kills many tumor cell types. Earlier studies with recombinant TRAIL, however, revealed its many shortcomings including a short half-life, off-target toxicity, and existence of TRAIL-resistant tumor cells. We improved the efficacy of recombinant TRAIL by redesigning its structure and the expression and purification procedures. The result is a highly stable leucine zipper (LZ)-TRAIL chimera that is simple to produce and purify. This chimera functions as a trimer in a manner that is similar to natural TRAIL. The formulation of the recombinant LZ-TRAIL we have developed has displayed high specific activity in both cell-based assays in vitro and animal tests in vivo. Our results have shown that the half-life of LZ-TRAIL is improved and now exceeds 1 h in mice compared with a half-life of only minutes reported earlier for recombinant TRAIL. We have concluded that our LZ-TRAIL construct will serve as a foundation for a new generation of fully human LZ-TRAIL proteins suitable for use in preclinical and clinical studies and for effective combination therapies to overcome tumor resistance to TRAIL.


Assuntos
Zíper de Leucina/genética , Neoplasias Mamárias Experimentais/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Citometria de Fluxo , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Camundongos SCID , Neoplasias/metabolismo , Neoplasias/patologia , Engenharia de Proteínas , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Transplantation ; 87(7): 983-91, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19352116

RESUMO

BACKGROUND: Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human beta-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human beta-cells and their progenitors and (2) the engraftment of encapsulated murine beta-cells in allo- and autoimmune settings. METHODS: Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. RESULTS: Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary beta-cells ameliorated diabetes without stimulating a detectable T-cell response. CONCLUSIONS: We demonstrate for the first time that human beta-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of beta-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells.


Assuntos
Células Secretoras de Insulina/fisiologia , Células Secretoras de Insulina/transplante , Insulina/metabolismo , Animais , Sobrevivência Celular , Diabetes Mellitus Experimental/cirurgia , Vírus da Leucemia Murina de Friend/genética , Genes Reporter , Glucose/metabolismo , Humanos , Hiperglicemia/prevenção & controle , Secreção de Insulina , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Luciferases/genética , Camundongos , Camundongos SCID , Camundongos Transgênicos , Transplante Heterólogo
15.
Vitam Horm ; 80: 541-62, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19251049

RESUMO

The pathogenesis of type 1 diabetes begins with the activation of autoimmune T killer cells and is followed by their homing into the pancreatic islets. After penetrating the pancreatic islets, T cells directly contact and destroy insulin-producing beta cells. This review provides an overview of the dynamic interactions which link T cell membrane type-1 matrix metalloproteinase (MT1-MMP) and the signaling adhesion CD44 receptor with T cell transendothelial migration and the subsequent homing of the transmigrated cells to the pancreatic islets. MT1-MMP regulates the functionality of CD44 in diabetogenic T cells. By regulating the functionality of T cell CD44, MT1-MMP mediates the transition of T cell adhesion to endothelial cells to the transendothelial migration of T cells, thus, controlling the rate at which T cells home into the pancreatic islets. As a result, the T cell MT1-MMP-CD44 axis controls the severity of the disease. Inhibition of MT1-MMP proteolysis of CD44 using highly specific and potent synthetic inhibitors, which have been clinically tested in cancer patients, reduces the rate of transendothelial migration and the homing of T cells. Result is a decrease in the net diabetogenic efficiency of T cells and a restoration of beta cell mass and insulin production in NOD mice. The latter is a reliable and widely used model of type I diabetes in humans. Overall, existing experimental evidence suggests that there is a sound mechanistic rationale for clinical trials of the inhibitors of T cell MT1-MMP in human type 1 diabetes patients.


Assuntos
Quimiotaxia de Leucócito/fisiologia , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/fisiologia , Metaloproteinases da Matriz/metabolismo , Linfócitos T/fisiologia , Animais , Humanos , Camundongos , Ratos
16.
PLoS One ; 4(3): e4952, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19300513

RESUMO

BACKGROUND: Matrix metalloproteinases (MMPs) play a significant role in the fragmentation of myelin basic protein (MBP) and demyelination leading to autoimmune multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). The classic MBP isoforms are predominantly expressed in the oligodendrocytes of the CNS. The splice variants of the single MBP gene (Golli-MBP BG21 and J37) are widely expressed in the neurons and also in the immune cells. The relative contribution of the individual MMPs to the MBP cleavage is not known. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate which MMP plays the primary role in cleaving MBP, we determined the efficiency of MMP-2, MMP-8, MMP-9, MMP-10, MMP-12, MT1-MMP, MT2-MMP, MT3-MMP, MT4-MMP, MT5-MMP and MT6-MMP in the cleavage of the MBP, BG21 and J37 isoforms in the in vitro cleavage reactions followed by mass-spectroscopy analysis of the cleavage fragments. As a result, we identified the MMP cleavage sites and the sequence of the resulting fragments. We determined that MBP, BG21 and J37 are highly sensitive to redundant MMP proteolysis. MT6-MMP (initially called leukolysin), however, was superior over all of the other MMPs in cleaving the MBP isoforms. Using the mixed lymphocyte culture assay, we demonstrated that MT6-MMP proteolysis of the MBP isoforms readily generated, with a near quantitative yield, the immunogenic N-terminal 1-15 MBP peptide. This peptide selectively stimulated the proliferation of the PGPR7.5 T cell clone isolated from mice with EAE and specific for the 1-15 MBP fragment presented in the MHC H-2(U) context. CONCLUSIONS/SIGNIFICANCE: In sum, our biochemical observations led us to hypothesize that MT6-MMP, which is activated by furin and associated with the lipid rafts, plays an important role in MS pathology and that MT6-MMP is a novel and promising drug target in MS especially when compared with other individual MMPs.


Assuntos
Metaloproteinases da Matriz/metabolismo , Esclerose Múltipla/imunologia , Proteína Básica da Mielina/metabolismo , Peptídeos/imunologia , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Humanos , Ativação Linfocitária , Metaloproteinases da Matriz/genética , Metalotioneína 3 , Camundongos , Dados de Sequência Molecular , Esclerose Múltipla/genética , Proteína Básica da Mielina/genética , Peptídeos/genética , Isoformas de Proteínas/genética , Alinhamento de Sequência , Linfócitos T/imunologia
17.
Cancer Res ; 68(11): 4086-96, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18519667

RESUMO

Invasion-promoting MT1-MMP is directly linked to tumorigenesis and metastasis. Our studies led us to identify those genes, the expression of which is universally linked to MT1-MMP in multiple tumor types. Genome-wide expression profiling of MT1-MMP-overexpressing versus MT1-MMP-silenced cancer cells and a further data mining analysis of the preexisting expression database of 190 human tumors of 14 cancer types led us to identify 11 genes, the expression of which correlated firmly and universally with that of MT1-MMP (P < 0.00001). These genes included regulators of energy metabolism (NNT), trafficking and membrane fusion (SLCO2A1 and ANXA7), signaling and transcription (NR3C1, JAG1, PI3K delta, and CK2 alpha), chromatin rearrangement (SMARCA1), cell division (STK38/NDR1), apoptosis (DAPK1), and mRNA splicing (SNRPB2). Our subsequent extensive analysis of cultured cells, tumor xenografts, and cancer patient biopsies supported our data mining. Our results suggest that transcriptional reprogramming of the specific downstream genes, which themselves are associated with tumorigenesis, represents a distinctive "molecular signature" of the proteolytically active MT1-MMP. We suggest that the transactivation activity of MT1-MMP contributes to the promigratory cell phenotype, which is induced by this tumorigenic proteinase. The activated downstream gene network then begins functioning in unison with MT1-MMP to rework the signaling, transport, cell division, energy metabolism, and other critical cell functions and to commit the cell to migration, invasion, and, consequently, tumorigenesis.


Assuntos
Metaloproteinase 14 da Matriz/genética , Neoplasias/genética , Ativação Transcricional , Apoptose , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Metabolismo Energético , Perfilação da Expressão Gênica , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
J Biol Chem ; 282(44): 32106-11, 2007 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17761671

RESUMO

Human diabetes mellitus (IDDM; type I diabetes) is a T cell-mediated disease that is closely modeled in non-obese diabetic (NOD) mice. The pathogenesis of IDDM involves the transmigration of autoimmune T cells into the pancreatic islets and the subsequent destruction of insulin-producing beta cells. Therapeutic interventions leading to beta cell regeneration and the reversal of established IDDM are exceedingly limited. We report here that specific inhibition of T cell intra-islet transmigration by using a small molecule proteinase inhibitor restores beta cell functionality, increases insulin-producing beta cell mass, and alleviates the severity of IDDM in acutely diabetic NOD mice. As a result, acutely diabetic NOD mice do not require insulin injections for survival for a significant time period, thus providing a promising clue to effect IDDM reversal in humans. The extensive morphometric analyses and the measurements of both the C-peptide blood levels and the proinsulin mRNA levels in the islets support our conclusions. Diabetes transfer experiments suggest that the inhibitor specifically represses the T cell transmigration and homing processes as opposed to causing immunosuppression. Overall, our data provide a rationale for the pharmacological control of the T cell transmigration step in human IDDM.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Linfócitos T/metabolismo , Animais , Peptídeo C/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Glucose/metabolismo , Imunossupressores/uso terapêutico , Insulina/genética , Metaloproteinase 14 da Matriz , Inibidores de Metaloproteinases de Matriz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Compostos Orgânicos/uso terapêutico , RNA Mensageiro/metabolismo
19.
J Biol Chem ; 282(29): 20847-53, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17537721

RESUMO

Pathogens or their toxins, including influenza virus, Pseudomonas, and anthrax toxins, require processing by host proprotein convertases (PCs) to enter host cells and to cause disease. Conversely, inhibiting PCs is likely to protect host cells from multiple furin-dependent, but otherwise unrelated, pathogens. To determine if this concept is correct, we designed specific nanomolar inhibitors of PCs modeled from the extended cleavage motif TPQRERRRKKR downward arrowGL of the avian influenza H5N1 hemagglutinin. We then confirmed the efficacy of the inhibitory peptides in vitro against the fluorescent peptide, anthrax protective antigen (PA83), and influenza hemagglutinin substrates and also in mice in vivo against two unrelated toxins, anthrax and Pseudomonas exotoxin. Peptides with Phe/Tyr at P1' were more selective for furin. Peptides with P1' Thr were potent against multiple PCs. Our strategy of basing the peptide sequence on a furin cleavage motif known for an avian flu virus shows the power of starting inhibitor design with a known substrate. Our results confirm that inhibiting furin-like PCs protects the host from the distinct furin-dependent infections and lay a foundation for novel, host cell-focused therapies against acute diseases.


Assuntos
Furina/química , Pseudomonas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antraz/metabolismo , Sítios de Ligação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Químicos , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Espectrometria de Fluorescência/métodos
20.
IUBMB Life ; 59(1): 6-13, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17365174

RESUMO

Membrane type-1 matrix metalloproteinase (MT1-MMP) shedding of the signaling and adhesion CD44 receptor plays a significant role in stimulating cancer cells locomotion. Similarly, and unexpectedly, MT1-MMP-dependent shedding of CD44 plays an equally significant role in regulating the adhesion to the pancreatic vasculature and also in the concomitant transendothelial migration and intra-islet homing of the diabetogenic, cytotoxic, T cells. Inactivation of the T cell MT1-MMP functionality by clinically tested, synthetic inhibitors leads to an extended immobilization of the T killer cells on the pancreatic vasculature and, subsequently, to immunosuppression because of the cessation of the T cell transmigration and homing. Injections of insulin jointly with an MT1-MMP inhibitor stimulated the regeneration of functional, insulin-producing, beta-cells in acutely diseased non-obese diabetic (NOD) mice. After insulin injections were suspended and inhibitor injections continued, diabetic NOD mice maintained mild hyperglycemia and did not require further insulin injections for survival. Overall, these data provide a substantive mechanistic rationale for clinical trials of the inhibitors of MT1-MMP in human type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/enzimologia , Receptores de Hialuronatos/fisiologia , Proteínas de Membrana/fisiologia , Peptídeo Hidrolases/fisiologia , Linfócitos T/enzimologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...