Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570485

RESUMO

Proton therapy is one of the promising radiotherapy modalities for the treatment of deep-seated and unresectable tumors, and its efficiency can further be enhanced by using boron-containing substances. Here, we explore the use of elemental boron (B) nanoparticles (NPs) as sensitizers for proton therapy enhancement. Prepared by methods of pulsed laser ablation in water, the used B NPs had a mean size of 50 nm, while a subsequent functionalization of the NPs by polyethylene glycol improved their colloidal stability in buffers. Laser-synthesized B NPs were efficiently absorbed by MNNG/Hos human osteosarcoma cells and did not demonstrate any remarkable toxicity effects up to concentrations of 100 ppm, as followed from the results of the MTT and clonogenic assay tests. Then, we assessed the efficiency of B NPs as sensitizers of cancer cell death under irradiation by a 160.5 MeV proton beam. The irradiation of MNNG/Hos cells at a dose of 3 Gy in the presence of 80 and 100 ppm of B NPs led to a 2- and 2.7-fold decrease in the number of formed cell colonies compared to control samples irradiated in the absence of NPs. The obtained data unambiguously evidenced the effect of a strong proton therapy enhancement mediated by B NPs. We also found that the proton beam irradiation of B NPs leads to the generation of reactive oxygen species (ROS), which evidences a possible involvement of the non-nuclear mechanism of cancer cell death related to oxidative stress. Offering a series of advantages, including a passive targeting option and the possibility of additional theranostic functionalities based on the intrinsic properties of B NPs (e.g., photothermal therapy or neutron boron capture therapy), the proposed concept promises a major advancement in proton beam-based cancer treatment.

2.
Entropy (Basel) ; 25(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37509935

RESUMO

Food quality control is an important task in the agricultural domain at the postharvest stage for avoiding food losses. The latest achievements in image processing with deep learning (DL) and computer vision (CV) approaches provide a number of effective tools based on the image colorization and image-to-image translation for plant quality control at the postharvest stage. In this article, we propose the approach based on Generative Adversarial Network (GAN) and Convolutional Neural Network (CNN) techniques to use synthesized and segmented VNIR imaging data for early postharvest decay and fungal zone predictions as well as the quality assessment of stored apples. The Pix2PixHD model achieved higher results in terms of VNIR images translation from RGB (SSIM = 0.972). Mask R-CNN model was selected as a CNN technique for VNIR images segmentation and achieved 58.861 for postharvest decay zones, 40.968 for fungal zones and 94.800 for both the decayed and fungal zones detection and prediction in stored apples in terms of F1-score metric. In order to verify the effectiveness of this approach, a unique paired dataset containing 1305 RGB and VNIR images of apples of four varieties was obtained. It is further utilized for a GAN model selection. Additionally, we acquired 1029 VNIR images of apples for training and testing a CNN model. We conducted validation on an embedded system equipped with a graphical processing unit. Using Pix2PixHD, 100 VNIR images from RGB images were generated at a rate of 17 frames per second (FPS). Subsequently, these images were segmented using Mask R-CNN at a rate of 0.42 FPS. The achieved results are promising for enhancing the food study and control during the postharvest stage.

3.
Phys Chem Chem Phys ; 25(16): 11601-11612, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040195

RESUMO

Eumelanin, the human skin pigment, is a poly-indolequinone material possessing a unique combination of physical and chemical properties. For numerous applications, the conductivity of eumelanin is of paramount importance. However, its hydration dependent conductivity is not well studied using transport-relaxation methods. Furthermore, there is no such work taking into account the simultaneous control of humidity as well as metal ion concentration. Here we present the first such study of the transport and relaxation characteristics of synthetic eumelanin doped with various Cu ion concentrations while controlling the humidity with a frequency range of 10-3 Hz-1 MHz. We found that Cu ions do not cause the appearance of additional relaxation processes, but partially slow down those present in neat eumelanin. In addition, considering previously published work, the key relaxation process observed in doped and undoped materials is associated with the moisture-induced synthesis of uncharged semiquinones and a corresponding increase in the overall aromaticity of the material.

4.
J Phys Chem Lett ; 13(50): 11720-11728, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36512678

RESUMO

Strontium titanate SrTiO3 (STO) is a canonical example of a quantum paraelectric, and its doping with manganese ions unlocks its potential as a quantum multiferroic candidate. However, to date, the specifics of incorporation of the manganese ion into the perovskite lattice and its impact on structure-property relationships are debatable questions. Herein, using high-precision X-ray diffraction of a Mn (2 atom %)-doped STO single crystal, clear fingerprints of the displacement disorder of Mn cations in the perovskite B-sublattice are observed. Moreover, near the temperature of the antiferrodistortive transition, the off-center Mn position splits in two, providing the unequal potential barrier's distribution for possible local atomic hopping. A link with this was found via analysis of the dielectric response that reveals two Arrhenius-type relaxation processes with similar activation energies (35 and 43 meV) and attempt frequencies (1 × 1011 and ∼1.6 × 1010 Hz), suggesting similar dielectric relaxation mechanisms.

5.
Nano Lett ; 22(8): 3380-3384, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35389652

RESUMO

We have studied the radio frequency dielectric response of a system consisting of separate polar water molecules periodically arranged in nanocages formed by the crystal lattice of the gemstone beryl. Below T = 20-30 K, quantum effects start to dominate the properties of the electric dipolar system as manifested by a crossover between the Curie-Weiss and the Barrett regimes in the temperature-dependent real dielectric permittivity ε'(T). When analyzing in detail the temperature evolution of the reciprocal permittivity (ε')-1 down to T ≈ 0.3 K and comparing it with the data obtained for conventional quantum paraelectrics, like SrTiO3, KTaO3, we discovered clear signatures of a quantum-critical behavior of the interacting water molecular dipoles: Between T = 6 and 14 K, the reciprocal permittivity follows a quadratic temperature dependence and displays a shallow minimum below 3 K. This is the first observation of "dielectric fingerprints" of quantum-critical phenomena in a paraelectric system of coupled point electric dipoles.

6.
Sci Rep ; 12(1): 6157, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418697

RESUMO

Lattice dynamics of a single crystal of lawsonite were studied over a broad range of frequencies (1 Hz to 20 THz) using impedance, THz time-domain and infrared spectroscopies. Based on polarized spectra of complex permittivity [Formula: see text] measured as a function of temperature between 10 K and 500 K, we analyzed the properties of the two known phase transitions-an antiferrodistortive one near [Formula: see text] and a ferroelectric one, occurring at [Formula: see text]. The former one is accompanied by a flat maximum in the THz-range permittivity [Formula: see text] near [Formula: see text], which is due to an overdamped polar excitation in the [Formula: see text] spectra reflecting the dynamics of water and hydroxyl groups. The strength of this mode decreases on cooling below [Formula: see text], and the mode vanishes below [Formula: see text] due to hydrogen ordering. At the pseudoproper ferroelectric phase transition, two independent anomalies in permittivity were observed. First, [Formula: see text] exhibits a peak at [Formula: see text] due to critical slowing down of a relaxation in the GHz range. Second, infrared and THz spectra revealed an optical phonon softening towards [Formula: see text] which causes a smaller but pronounced maximum in [Formula: see text]. Such anomaly, consisting in a soft mode polarized perpendicularly to the ferroelectric axis, is unusual in ferroelectrics.

7.
J Phys Condens Matter ; 32(46): 465401, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32756024

RESUMO

Broadband dielectric and AC conductivity spectra (1 Hz to 1 THz) of the superprotonic single crystal Rb3H(SeO4)2 (RHSe) along the c axis were studied in a wide temperature range 10 K < T < 475 K that covers the ferroelastic (T < 453 K) and superprotonic (T > 453 K) phases. A contribution of the interfacial electrode polarization layers was separated from the bulk electrical properties and the bulk DC conductivity was evaluated above room temperature. The phase transition to the superprotonic phase was shown to be connected with the steep but almost continuous increase in bulk DC conductivity, and with giant permittivity effects due to the enhanced bulk proton hopping and interfacial electrode polarization layers. The AC conductivity scaling analysis confirms validity of the first universality above room temperature. At low temperatures, although the conductivity was low, the frequency dependence of dielectric loss indicates no clear evidence of the nearly constant loss effect, so-called second universality. The bulk (intrinsic) dielectric properties, AC and DC conductivity of the RHSe crystal at frequencies up to 1 GHz are shown to be caused by the thermally activated proton hopping. The increase of the AC conductivity above 100 GHz could be assigned to the low-frequency wing of proton vibrational modes.

8.
J Phys Condens Matter ; 32(41): 415701, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32498061

RESUMO

Core-shell composites of ferromagnetic conducting nanoparticles La0.65Sr0.35MnO3 (LSMO) embedded in an insulating matrix of TiO2 (LSMO@TiO2) have been processed, structurally and magnetically characterized, and their DC magnetoresistivity and complex dielectric response measured and fitted from Hz up to the infrared (IR) range (1014 Hz). XRD indicates that the TiO2 shells are amorphous. Modelling of the IR spectra using standard models based on the effective medium approximation has it confirmed and has characterized the effective phonon modes of the LSMO nanoceramics and LSMO@TiO2 composite. Modelling of the lower-frequency spectra has shown that TiO2 shell thicknesses are rather non-uniform down to thin nm values, which leads to giant low-frequency permittivity values and non-negligible free-carrier tunnelling among the LSMO cores. Two main dielectric dispersion regions were observed and shown to be due to the inhomogeneous conductivity-the one occuring in the 1011-1012 Hz range relates to nonmagnetic less-conducting dead layers on the surface of LSMO nanocrystallites and the broad second one below the 1010 Hz range is due to the non-uniform thicknesses of the dielectric TiO2 shells. In the IR range, effective phonon modes of the LSMO nanoceramics and LSMO@TiO2 composite were characterized from the reflectivity spectra.

9.
J Phys Condens Matter ; 32(17): 175402, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31940603

RESUMO

MnO thin films with various thicknesses and strains were grown on MgO substrates by pulsed laser deposition technique, then characterized using x-ray diffraction and infrared reflectance spectroscopy. Films grown on (0 0 1)-oriented MgO substrates exhibit homogenous biaxial compressive strain which increases as the film thickness is reduced. For that reason, in paramagnetic phase, the frequency of doubly-degenerate phonon increases with the strain, and splits below Néel temperature T N due to the magnetic-exchange interaction. The phonon splitting in the MnO (0 0 1) films is 20% larger than that of the bulk MnO. Films grown on (1 1 0)-oriented MgO substrates exhibit a huge phonon splitting already at room temperature due to the anisotropic in-plane compressive strain. Below T N, the lower-frequency phonon splits in the IR spectra and the higher-frequency phonon strongly hardens in AFM phase; these features are evidences for a spin-order-induced structural phase transition from tetragonal to a lower symmetry phase. Total phonon splitting is 55 cm-1 in (1 1 0)-oriented MnO film, which is more than twice the value in bulk MnO, but since the splitting is present already in paramagnetic phase, we cannot clearly correlate it with the value of exchange coupling constant. Nevertheless, at least observation of enhanced phonon splitting in strained MnO (0 0 1) films show that the exchange coupling could be enhanced by the compressive strain which supports recent theoretical predictions published by Wan et al (2016 Sci. Rep. 6 22743) and Fischer et al (2009 Phys. Rev. B 80 014408).

10.
Inorg Chem ; 55(9): 4320-9, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27058393

RESUMO

Pb2MnTeO6, a new double perovskite, was synthesized. Its crystal structure was determined by synchrotron X-ray and powder neutron diffraction. Pb2MnTeO6 is monoclinic (I2/m) at room temperature with a regular arrangement of all the cations in their polyhedra. However, when the temperature is lowered to ∼120 K it undergoes a phase transition from I2/m to C2/c structure. This transition is accompanied by a displacement of the Pb atoms from the center of their polyhedra due to the 6s(2) lone-pair electrons, together with a surprising off-centering of Mn(2+) (d(5)) magnetic cations. This strong first-order phase transition is also evidenced by specific heat, dielectric, Raman, and infrared spectroscopy measurements. The magnetic characterizations indicate an anti-ferromagnetic (AFM) order below TN ≈ 20 K; analysis of powder neutron diffraction data confirms the magnetic structure with propagation vector k = (0 1 0) and collinear AFM spins. The observed jump in dielectric permittivity near ∼150 K implies possible anti-ferroelectric behavior; however, the absence of switching suggests that Pb2MnTeO6 can only be antipolar. First-principle calculations confirmed that the crystal and magnetic structures determined are locally stable and that anti-ferroelectric switching is unlikely to be observed in Pb2MnTeO6.

11.
Inorg Chem ; 50(8): 3559-66, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21417340

RESUMO

Solid solutions InMn(1-x)Ga(x)O(3) (0 ≤ x ≤ 1) have been investigated using magnetic, dielectric, specific heat, differential scanning calorimetry (DSC), and high-temperature powder synchrotron X-ray diffraction (HT-SXRD) measurements. It was found that samples with 0.5 ≤ x ≤ 1 crystallize in space group P6(3)/mmc with a ~ 3.32 Å and c ~ 11.9 Å, and samples with 0.0 ≤ x ≤ 0.4 crystallize in space group P6(3)cm with a ~ 5.8 Å and c ~ 11.6 Å at room temperature. HT-SXRD data revealed the existence of a P6(3)cm-to-P6(3)/mmc phase transition at about 480 K in InMn(0.6)Ga(0.4)O(3) and at 950 K in InMn(0.7)Ga(0.3)O(3). However, no dielectric, phonon, second-harmonic-generation, or DSC anomalies were found to be associated with these phase transitions. The phase transition should be improper ferroelectric from the symmetry point of view, but the above-mentioned experimental facts, together with the absence of ferroelectric hysteresis loops, revealed no evidence for ferroelectricity in the low-temperature P6(3)cm structure. We suggest that InMn(1-x)Ga(x)O(3) corresponds to a nonferroelectric phase of hexagonal RMnO(3) with P6(3)cm symmetry. The antiferromagnetic phase-transition temperature decreases from 118 K for x = 0 to 105 K for x = 0.1 and 73 K for x = 0.2, and no long-range magnetic ordering could be found for x ≥ 0.3. Specific heat anomalies associated with short-range magnetic ordering were observed for 0.0 ≤ x ≤ 0.5. InMn(1-x)Ga(x)O(3) with small Mn contents (0.8 ≤ x ≤ 0.98) has a bright-blue color.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA