Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Br J Haematol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594875

RESUMO

ACTN1-related thrombocytopenia is a rare disorder caused by heterozygous variants in the ACTN1 gene characterized by macrothrombocytopenia and mild bleeding tendency. We describe for the first time two patients affected with ACTN1-RT caused by a homozygous variant in ACTN1 (c.982G>A) with mild heart valve defects unexplained by any other genetic variants investigated by WES. Within the reported family, the homozygous sisters have moderate thrombocytopenia and marked platelet macrocytosis with giant platelets, revealing a more severe haematological phenotype compared to their heterozygous relatives and highlighting a significant effect of allelic burden on platelet size. Moreover, we hypothesize that some ACTN1 variants, especially when present in the homozygous state, may also contribute to the cardiac abnormalities.

2.
Front Genet ; 14: 1240758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790699

RESUMO

Somatic mosaicism appears as a recurrent phenomenon among patients suffering from Fanconi anemia (FA), but its direct prognostic significance mostly remains an open question. The clinical picture of FA mosaic subjects could indeed vary from just mild features to severe hematologic failure. Here, we illustrate the case of a proband whose FA familiarity, modest signs (absence of hematological anomalies and fertility issues), and chromosome fragility test transition to negative overtime were suggestive of somatic mosaicism. In line with this hypothesis, genetic testing on patient's peripheral blood and buccal swab reported the presence of the only FANCA paternal variant (FANCA:c.2638C>T, p. Arg880*) and of both parental alleles (the additional FANCA:c.3164G>A, p. Arg1055Gln), respectively. Moreover, the SNP analysis performed on the same biological specimens allowed us to attribute the proband's mosaicism status to a possible gene conversion mechanism. Our case clearly depicts the positive association between somatic mosaicism and the proband's favorable clinical course due to the occurrence of the reversion event at the hematopoietic stem cell level. Since this condition concerns only a limited subgroup of FA individuals, the accurate evaluation of the origin and extent of clonality would be key to steer clinicians toward the most appropriate therapeutic decision for their FA mosaic patients.

3.
Am J Hum Genet ; 110(11): 1938-1949, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37865086

RESUMO

Fanconi anemia (FA) is a clinically variable and genetically heterogeneous cancer-predisposing disorder representing the most common bone marrow failure syndrome. It is caused by inactivating predominantly biallelic mutations involving >20 genes encoding proteins with roles in the FA/BRCA DNA repair pathway. Molecular diagnosis of FA is challenging due to the wide spectrum of the contributing gene mutations and structural rearrangements. The assessment of chromosomal fragility after exposure to DNA cross-linking agents is generally required to definitively confirm diagnosis. We assessed peripheral blood genome-wide DNA methylation (DNAm) profiles in 25 subjects with molecularly confirmed clinical diagnosis of FA (FANCA complementation group) using Illumina's Infinium EPIC array. We identified 82 differentially methylated CpG sites that allow to distinguish subjects with FA from healthy individuals and subjects with other genetic disorders, defining an FA-specific DNAm signature. The episignature was validated using a second cohort of subjects with FA involving different complementation groups, documenting broader genetic sensitivity and demonstrating its specificity using the EpiSign Knowledge Database. The episignature properly classified DNA samples obtained from bone marrow aspirates, demonstrating robustness. Using the selected probes, we trained a machine-learning model able to classify EPIC DNAm profiles in molecularly unsolved cases. Finally, we show that the generated episignature includes CpG sites that do not undergo functional selective pressure, allowing diagnosis of FA in individuals with reverted phenotype due to gene conversion. These findings provide a tool to accelerate diagnostic testing in FA and broaden the clinical utility of DNAm profiling in the diagnostic setting.


Assuntos
Anemia de Fanconi , Humanos , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Metilação de DNA/genética , Proteínas/genética , DNA/metabolismo
4.
Br J Haematol ; 203(5): 852-859, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37610030

RESUMO

MECOM-associated syndrome (MECOM-AS) is a rare disease characterized by amegakaryocytic thrombocytopenia, progressive bone marrow failure, pancytopenia and radioulnar synostosis with high penetrance. The clinical phenotype may also include finger malformations, cardiac and renal alterations, hearing loss, B-cell deficiency and predisposition to infections. The syndrome, usually diagnosed in the neonatal period because of severe thrombocytopenia, is caused by mutations in the MECOM gene, encoding for the transcription factor EVI1. The mechanism linking the alteration of EVI1 function and thrombocytopenia is poorly understood. In a paediatric patient affected by severe thrombocytopenia, we identified a novel variant of the MECOM gene (p.P634L), whose effect was tested on pAP-1 enhancer element and promoters of targeted genes showing that the mutation impairs the repressive activity of the transcription factor. Moreover, we demonstrated that EVI1 controls the transcriptional regulation of MPL, a gene whose mutations are responsible for congenital amegakaryocytic thrombocytopenia (CAMT), potentially explaining the partial overlap between MECOM-AS and CAMT.


Assuntos
Pancitopenia , Trombocitopenia , Recém-Nascido , Humanos , Criança , Pancitopenia/etiologia , Fatores de Transcrição/genética , Trombocitopenia/diagnóstico , Transtornos da Insuficiência da Medula Óssea , Mutação , Receptores de Trombopoetina/genética , Proteína do Locus do Complexo MDS1 e EVI1/genética
5.
Front Genet ; 14: 1209138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547463

RESUMO

Introduction: Fanconi anemia (FA) is a genome instability condition that drives somatic mosaicism in up to 25% of all patients, a phenomenon now acknowledged as a good prognostic factor. Herein, we describe the case of P1, a FA proband carrying a splicing variant, molecularly compensated by a de novo insertion. Methods and Results: Targeted next-generation sequencing on P1's peripheral blood DNA detected the known FANCA c.2778 + 83C > G intronic mutation and suggested the presence of a large deletion on the other allele, which was then assessed by MLPA and RT-PCR. To determine the c.2778 + 83C > G splicing effect, we performed a RT-PCR on P1's lymphoblastoid cell line (LCL) and on the LCL of another patient (P2) carrying the same variant. Although we confirmed the expected alternative spliced form with a partial intronic retention in P2, we detected no aberrant products in P1's sample. Sequencing of P1's LCL DNA allowed identification of the de novo c.2778 + 86insT variant, predicted to compensate 2778 + 83C > G impact. Albeit not found in P1's bone marrow (BM) DNA, c.2778 + 86insT was detected in a second P1's LCL established afterward, suggesting its occurrence at a low level in vivo. Minigene assay recapitulated the c.2778 + 83C > G effect on splicing and the compensatory role of c.2778 + 86insT in re-establishing the physiological mechanism. Accordingly, P1's LCL under mitomycin C selection preserved the FA pathway activity in terms of FANCD2 monoubiquitination and cell survival. Discussion: Our findings prove the role of c.2778 + 86insT as a second-site variant capable of rescuing c.2778 + 83C > G pathogenicity in vitro, which might contribute to a slow hematopoietic deterioration and a mild hematologic evolution.

7.
Haematologica ; 108(7): 1909-1919, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36519321

RESUMO

Inherited thrombocytopenias (IT) are genetic diseases characterized by low platelet count, sometimes associated with congenital defects or a predisposition to develop additional conditions. Next-generation sequencing has substantially improved our knowledge of IT, with more than 40 genes identified so far, but obtaining a molecular diagnosis remains a challenge especially for patients with non-syndromic forms, having no clinical or functional phenotypes that raise suspicion about specific genes. We performed exome sequencing (ES) in a cohort of 116 IT patients (89 families), still undiagnosed after a previously validated phenotype-driven diagnostic algorithm including a targeted analysis of suspected genes. ES achieved a diagnostic yield of 36%, with a gain of 16% over the diagnostic algorithm. This can be explained by genetic heterogeneity and unspecific genotype-phenotype relationships that make the simultaneous analysis of all the genes, enabled by ES, the most reasonable strategy. Furthermore, ES disentangled situations that had been puzzling because of atypical inheritance, sex-related effects or false negative laboratory results. Finally, ES-based copy number variant analysis disclosed an unexpectedly high prevalence of RUNX1 deletions, predisposing to hematologic malignancies. Our findings demonstrate that ES, including copy number variant analysis, can substantially contribute to the diagnosis of IT and can solve diagnostic problems that would otherwise remain a challenge.


Assuntos
Testes Genéticos , Trombocitopenia , Humanos , Sequenciamento do Exoma , Fenótipo , Testes Genéticos/métodos , Genótipo , Trombocitopenia/diagnóstico , Trombocitopenia/genética
8.
Haematologica ; 108(5): 1385-1393, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36226497

RESUMO

Congenital amegakaryocytic thrombocytopenia (CAMT) is a recessive disorder characterized by severe reduction of megakaryocytes and platelets at birth, which evolves toward bone marrow aplasia in childhood. CAMT is mostly caused by mutations in MPL (CAMT-MPL), the gene encoding the receptor of thrombopoietin (THPO), a crucial cytokine regulating hematopoiesis. CAMT can be also due to mutations affecting the THPO coding region (CAMT-THPO). In a child with the clinical picture of CAMT, we identified the homozygous c.-323C>T substitution, affecting a potential regulatory region of THPO. Although mechanisms controlling THPO transcription are not characterized, bioinformatics and in vitro analysis showed that c.-323C>T prevents the binding of transcription factors ETS1 and STAT4 to the putative THPO promoter, impairing THPO expression. Accordingly, in the proband the serum THPO concentration indicates defective THPO production. Based on these findings, the patient was treated with the THPO-mimetic agent eltrombopag, which induced a significant increase in platelet count and stable remission of bleeding symptoms. Herein, we report a novel pathogenic variant responsible for CAMT and provide new insights into the mechanisms regulating transcription of the THPO gene.


Assuntos
Receptores de Trombopoetina , Trombopoetina , Criança , Recém-Nascido , Humanos , Trombopoetina/farmacologia , Receptores de Trombopoetina/genética , Mutação , Megacariócitos/patologia , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-ets-1/genética , Fator de Transcrição STAT4/genética
9.
Front Pediatr ; 10: 967417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507135

RESUMO

Background: Inherited thrombocytopenias (ITs) are rare congenital bleeding disorders characterized by different clinical expression and variable prognosis. ITs are poorly known by clinicians and often misdiagnosed with most common forms of thrombocytopenia. Material and methods: "CHildren with Inherited Platelet disorders Surveillance" study (CHIPS) is a retrospective - prospective observational cohort study conducted between January 2003 and January 2022 in 17 centers affiliated to the Italian Association of Pediatric Hematology and Oncology (AIEOP). The primary objective of this study was to collect clinical and laboratory data on Italian pediatric patients with inherited thrombocytopenias. Secondary objectives were to calculate prevalence of ITs in Italian pediatric population and to assess frequency and genotype-phenotype correlation of different types of mutations in our study cohort. Results: A total of 139 children, with ITs (82 male - 57 female) were enrolled. ITs prevalence in Italy ranged from 0.7 per 100,000 children during 2010 to 2 per 100,000 children during 2022. The median time between the onset of thrombocytopenia and the diagnosis of ITs was 1 years (range 0 - 18 years). A family history of thrombocytopenia has been reported in 90 patients (65%). Among 139 children with ITs, in 73 (53%) children almost one defective gene has been identified. In 61 patients a pathogenic mutation has been identified. Among them, 2 patients also carry a variant of uncertain significance (VUS), and 4 others harbour 2 VUS variants. VUS variants were identified in further 8 patients (6%), 4 of which carry more than one variant VUS. Three patients (2%) had a likely pathogenic variant while in 1 patient (1%) a variant was identified that was initially given an uncertain significance but was later classified as benign. In addition, in 17 patients the genetic diagnosis is not available, but their family history and clinical/laboratory features strongly suggest the presence of a specific genetic cause. In 49 children (35%) no genetic defect were identified. In ninetyseven patients (70%), thrombocytopenia was not associated with other clinically apparent disorders. However, 42 children (30%) had one or more additional clinical alterations. Conclusion: Our study provides a descriptive collection of ITs in the pediatric Italian population.

11.
Mol Genet Genomic Med ; 10(6): e1926, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35348309

RESUMO

BACKGROUND: Despite consolidated guidelines, the clinical diagnosis and prognosis of cystic fibrosis (CF) is still challenging mainly because of the extensive phenotypic heterogeneity and the high number of CFTR variants, including their combinations as complex alleles. RESULTS: We report a family with a complicated syndromic phenotype, which led to the suspicion not only of CF, but of a dominantly inherited skeletal dysplasia (SD). Whereas the molecular basis of the SD was not clarified, segregation analysis was central to make a correct molecular diagnosis of CF, as it allowed to identify three CFTR variants encompassing two known maternal mutations and a novel paternal microdeletion. CONCLUSION: This case well illustrates possible pitfalls in the clinical and molecular diagnosis of CF; presence of complex phenotypes deflecting clinicians from appropriate CF recognition, and/or identification of two mutations assumed to be in trans but with an unconfirmed status, which underline the importance of an in-depth molecular CFTR analysis.


Assuntos
Fibrose Cística , Alelos , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Mutação , Fenótipo
13.
Haematologica ; 107(1): 260-267, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33472357

RESUMO

GFI1B is a transcription factor essential for the regulation of erythropoiesis and megakaryopoiesis, and pathogenic variants have been associated with thrombocytopenia and bleeding. Analysing thrombocytopenic families by whole exome sequencing, we identified a novel GFI1B variant (c.648+5G>A), which causes exon 9 skipping and overexpression of a shorter p32 isoform. We report the clinical data of our patients and critically review the phenotype observed in individuals with different GFI1B variants leading to the same effect on the p32 expression. Since p32 is increased in acute and chronic leukemia cells, we tested the expression level of genes playing a role in various type of cancers, including hematological tumors and found that they are significantly dysregulated, suggesting a potential role for GFI1B in carcinogenesis regulation. Increasing the detection of individuals with GFI1B variants will allow us to better characterize this rare disease and determine whether it is associated with an increased risk of developing malignancies.


Assuntos
Mutação em Linhagem Germinativa , Trombocitopenia , Carcinogênese , Humanos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/genética , Trombocitopenia/genética
14.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638529

RESUMO

Bernard-Soulier syndrome (BSS) is an autosomal-recessive bleeding disorder caused by biallelic variants in the GP1BA, GP1BB, and GP9 genes encoding the subunits GPIbα, GPIbß, and GPIX of the GPIb-IX complex. Pathogenic variants usually affect the extracellular or transmembrane domains of the receptor subunits. We investigated a family with BSS caused by the homozygous c.528_550del (p.Arg177Serfs*124) variant in GP1BB, which is the first mutation ever identified that affects the cytoplasmic domain of GPIbß. The loss of the intracytoplasmic tail of GPIbß results in a mild form of BSS, characterized by only a moderate reduction of the GPIb-IX complex expression and mild or absent bleeding tendency. The variant induces a decrease of the total platelet expression of GPIbß; however, all of the mutant subunit expressed in platelets is correctly assembled into the GPIb-IX complex in the plasma membrane, indicating that the cytoplasmic domain of GPIbß is not involved in assembly and trafficking of the GPIb-IX receptor. Finally, the c.528_550del mutation exerts a dominant effect and causes mild macrothrombocytopenia in heterozygous individuals, as also demonstrated by the investigation of a second unrelated pedigree. The study of this novel GP1BB variant provides new information on pathophysiology of BSS and the assembly mechanisms of the GPIb-IX receptor.


Assuntos
Síndrome de Bernard-Soulier/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Trombocitopenia/genética , Adulto , Síndrome de Bernard-Soulier/sangue , Síndrome de Bernard-Soulier/patologia , Plaquetas/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Domínios Proteicos/genética , Trombocitopenia/patologia , Fator de von Willebrand/metabolismo
15.
J Cell Physiol ; 236(8): 5664-5675, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33432587

RESUMO

Warsaw breakage syndrome (WABS), is caused by biallelic mutations of DDX11, a gene coding a DNA helicase. We have recently reported two affected sisters, compound heterozygous for a missense (p.Leu836Pro) and a frameshift (p.Lys303Glufs*22) variant. By investigating the pathogenic mechanism, we demonstrate the inability of the DDX11 p.Leu836Pro mutant to unwind forked DNA substrates, while retaining DNA binding activity. We observed the accumulation of patient-derived cells at the G2/M phase and increased chromosomal fragmentation after mitomycin C treatment. The phenotype partially overlaps with features of the Fanconi anemia cells, which shows not only genomic instability but also defective mitochondria. This prompted us to examine mitochondrial functionality in WABS cells and revealed an altered aerobic metabolism. This opens the door to the further elucidation of the molecular and cellular basis of an impaired mitochondrial phenotype and sheds light on this fundamental process in cell physiology and the pathogenesis of these diseases.


Assuntos
DNA Helicases/genética , Anemia de Fanconi/genética , Instabilidade Genômica/genética , Síndrome de Kearns-Sayre/metabolismo , Miopatias Mitocondriais/metabolismo , Anormalidades Múltiplas/genética , RNA Helicases DEAD-box/genética , DNA Helicases/metabolismo , Anemia de Fanconi/metabolismo , Genômica , Humanos , Síndrome de Kearns-Sayre/genética , Miopatias Mitocondriais/genética , Mutação/genética
16.
Mol Genet Genomic Med ; 7(5): e639, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30924321

RESUMO

BACKGROUND: Warsaw Breakage Syndrome (WABS) is an ultra rare cohesinopathy caused by biallelic mutation of DDX11 gene. It is clinically characterized by pre and postnatal growth delay, microcephaly, hearing loss with cochlear hypoplasia, skin color abnormalities, and dysmorphisms. METHODS: Mutational screening and functional analyses (protein expression and 3D-modeling) were performed in order to investigate the presence and pathogenicity of DDX11 variant identified in our patients. RESULTS: We report the clinical history of two sisters affected by WABS with a pathological mytomicin C test carrying compound heterozygous mutations (c.2507T > C / c.907_920del) of the DDX11 gene. The pathogenicity of this variant was confirmed in the light of a bioinformatic study and protein three-dimensional modeling, as well as expression analysis. CONCLUSION: These findings further extend the clinical and molecular knowledge about the WABS showing a possible mild phenotype without major malformations or intellectual disability.


Assuntos
Anormalidades Múltiplas/genética , Manchas Café com Leite/genética , RNA Helicases DEAD-box/genética , DNA Helicases/genética , Perda Auditiva Neurossensorial/genética , Fenótipo , Anormalidades Múltiplas/patologia , Manchas Café com Leite/patologia , Linhagem Celular , Células Cultivadas , Criança , Pré-Escolar , Feminino , Perda Auditiva Neurossensorial/patologia , Humanos , Mutação , Síndrome
17.
Hamostaseologie ; 39(1): 87-94, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29996171

RESUMO

MYH9-related disease (MYH9-RD) is an autosomal-dominant thrombocytopenia caused by mutations in the gene for non-muscle myosin heavy chain IIA (NMMHC-IIA). Patients present congenital macrothrombocytopenia and inclusions of NMMHC-IIA in leukocytes, and have a variable risk of developing kidney damage, sensorineural deafness, presenile cataracts and/or liver enzymes abnormalities. The spectrum of mutations found in MYH9-RD patients is limited and the incidence and severity of the non-congenital features are predicted by the causative MYH9 variant. In particular, different alterations of the C-terminal tail domain of NMMHC-IIA associate with remarkably different disease evolution. We report four novel MYH9 mutations affecting the tail domain of NMMHC-IIA and responsible for MYH9-RD in four families. Two variants cause amino acid substitutions in the coiled-coil region of NMMHC-IIA, while the other two are a splicing variant and a single nucleotide deletion both resulting in frameshift alterations of the short non-helical tailpiece. Characterization of phenotypes of affected individuals shows that all of these novel variants are associated with a mild clinical evolution of the disease.


Assuntos
Transtornos Cromossômicos/genética , Proteínas Motores Moleculares/genética , Mutação , Cadeias Pesadas de Miosina/genética , Trombocitopenia/congênito , Adolescente , Adulto , Idoso , Substituição de Aminoácidos , Quebra Cromossômica , Transtornos Cromossômicos/patologia , Feminino , Mutação da Fase de Leitura , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Motores Moleculares/química , Cadeias Pesadas de Miosina/química , Linhagem , Fenótipo , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Trombocitopenia/genética , Trombocitopenia/patologia , Adulto Jovem
18.
Blood ; 133(12): 1346-1357, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30591527

RESUMO

Inherited thrombocytopenias (ITs) are a heterogeneous group of disorders characterized by low platelet count that may result in bleeding tendency. Despite progress being made in defining the genetic causes of ITs, nearly 50% of patients with familial thrombocytopenia are affected with forms of unknown origin. Here, through exome sequencing of 2 siblings with autosomal-recessive thrombocytopenia, we identified biallelic loss-of-function variants in PTPRJ . This gene encodes for a receptor-like PTP, PTPRJ (or CD148), which is expressed abundantly in platelets and megakaryocytes. Consistent with the predicted effects of the variants, both probands have an almost complete loss of PTPRJ at the messenger RNA and protein levels. To investigate the pathogenic role of PTPRJ deficiency in hematopoiesis in vivo, we carried out CRISPR/Cas9-mediated ablation of ptprja (the ortholog of human PTPRJ) in zebrafish, which induced a significantly decreased number of CD41+ thrombocytes in vivo. Moreover, megakaryocytes of our patients showed impaired maturation and profound defects in SDF1-driven migration and formation of proplatelets in vitro. Silencing of PTPRJ in a human megakaryocytic cell line reproduced the functional defects observed in patients' megakaryocytes. The disorder caused by PTPRJ mutations presented as a nonsyndromic thrombocytopenia characterized by spontaneous bleeding, small-sized platelets, and impaired platelet responses to the GPVI agonists collagen and convulxin. These platelet functional defects could be attributed to reduced activation of Src family kinases. Taken together, our data identify a new form of IT and highlight a hitherto unknown fundamental role for PTPRJ in platelet biogenesis.


Assuntos
Plaquetas/patologia , Predisposição Genética para Doença , Megacariócitos/patologia , Mutação , Trombocitopenia/patologia , Adolescente , Adulto , Animais , Plaquetas/metabolismo , Sistemas CRISPR-Cas , Criança , Feminino , Seguimentos , Hematopoese , Humanos , Masculino , Megacariócitos/metabolismo , Pessoa de Meia-Idade , Linhagem , Prognóstico , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/antagonistas & inibidores , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Trombocitopenia/etiologia , Trombocitopenia/genética , Peixe-Zebra
19.
Br J Haematol ; 183(2): 276-288, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30351444

RESUMO

The inherited thrombocytopenias (IT) are a heterogeneous group of diseases resulting from mutations in more than 30 different genes. Among them, ACTN1-related thrombocytopenia (ACTN1-RT; Online Mendelian Inheritance in Man: 615193) is one of the most recently identified forms. It has been described as a mild autosomal dominant macrothrombocytopenia caused by mutations in ACTN1, a gene encoding for one of the two non-muscle isoforms of α-actinin. We recently identified seven new unrelated families with ACTN1-RT caused by different mutations. Two of them are novel missense variants (p.Trp128Cys and p.Pro233Leu), whose pathogenic role has been confirmed by in vitro studies. Together with the 10 families we have previously described, our cohort of ACTN1-RT now consists of 49 individuals carrying ACTN1 mutations. This is the largest case series ever collected and enabled a critical evaluation of the clinical aspects of the disease. We concluded that ACTN1-RT is the fourth most frequent form of IT worldwide and it is characterized by platelet macrocytosis in all affected subjects and mild thrombocytopenia in less than 80% of cases. The risk of bleeding, either spontaneous or upon haemostatic challenge, is negligible and there are no other associated defects, either congenital or acquired. Therefore, ACTN1-RT is a benign form of IT, whose diagnosis provides affected individuals and their families with a good prognosis.


Assuntos
Actinina/genética , Doenças Hematológicas/genética , Mutação , Trombocitopenia/genética , Adulto , Idoso , Contagem de Células Sanguíneas , Plaquetas/patologia , Criança , Análise Mutacional de DNA/métodos , Eritrócitos Anormais/patologia , Feminino , Doenças Hematológicas/sangue , Doenças Hematológicas/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Agregação Plaquetária , Trombocitopenia/sangue
20.
Gene ; 664: 152-167, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29679756

RESUMO

The MYH9 gene encodes the heavy chain of non-muscle myosin IIA, a widely expressed cytoplasmic myosin that participates in a variety of processes requiring the generation of intracellular chemomechanical force and translocation of the actin cytoskeleton. Non-muscle myosin IIA functions are regulated by phosphorylation of its 20 kDa light chain, of the heavy chain, and by interactions with other proteins. Variants of MYH9 cause an autosomal-dominant disorder, termed MYH9-related disease, and may be involved in other conditions, such as chronic kidney disease, non-syndromic deafness, and cancer. This review discusses the structure of the MYH9 gene and its protein, as well as the regulation and physiologic functions of non-muscle myosin IIA with particular reference to embryonic development. Moreover, the review focuses on current knowledge about the role of MYH9 variants in human disease.


Assuntos
Perda Auditiva Neurossensorial/genética , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Trombocitopenia/congênito , Animais , Linhagem Celular , Surdez/genética , Humanos , Camundongos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Mutação , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Neoplasias/genética , Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/genética , Fosforilação , Insuficiência Renal Crônica/genética , Trombocitopenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...