Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Public Health Manag Pract ; 29(6): 845-853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37738597

RESUMO

CONTEXT: Prior to the COVID-19 pandemic, wastewater influent monitoring for tracking disease burden in sewered communities was not performed in Ohio, and this field was only on the periphery of the state academic research community. PROGRAM: Because of the urgency of the pandemic and extensive state-level support for this new technology to detect levels of community infection to aid in public health response, the Ohio Water Resources Center established relationships and support of various stakeholders. This enabled Ohio to develop a statewide wastewater SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) monitoring network in 2 months starting in July 2020. IMPLEMENTATION: The current Ohio Coronavirus Wastewater Monitoring Network (OCWMN) monitors more than 70 unique locations twice per week, and publicly available data are updated weekly on the public dashboard. EVALUATION: This article describes the process and decisions that were made during network initiation, the network progression, and data applications, which can inform ongoing and future pandemic response and wastewater monitoring. DISCUSSION: Overall, the OCWMN established wastewater monitoring infrastructure and provided a useful tool for public health professionals responding to the pandemic.


Assuntos
COVID-19 , Águas Residuárias , Humanos , Ohio , Pandemias/prevenção & controle , Saúde Pública , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2
2.
Appl Environ Microbiol ; 88(22): e0087422, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36286480

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019 (COVID-19) pandemic has highlighted an important role for efficient surveillance of microbial pathogens. High-throughput sequencing technologies provide valuable surveillance tools, offering opportunities to conduct high-resolution monitoring from diverse sample types, including from environmental sources. However, given their large size and potential to contain mixtures of lineages within samples, such genomic data sets can present challenges for analyzing the data and communicating results with diverse stakeholders. Here, we report MixviR, an R package for exploring, analyzing, and visualizing genomic data from potentially mixed samples of a target microbial group. MixviR characterizes variation at both the nucleotide and amino acid levels and offers the RShiny interactive dashboard for exploring data. We demonstrate MixviR's utility with validation studies using mixtures of known lineages from both SARS-CoV-2 and Mycobacterium tuberculosis and with a case study analyzing lineages of SARS-CoV-2 in wastewater samples over time at a sampling location in Ohio, USA. IMPORTANCE High-throughput sequencing technologies hold great potential for contributing to genomic-based surveillance of microbial diversity from environmental samples. However, the size of the data sets, along with the potential for environmental samples to contain multiple evolutionary lineages of interest, present challenges around analyzing and effectively communicating inferences from these data sets. The software described here provides a novel and valuable tool for exploring such data. Though originally designed and used for monitoring SARS-CoV-2 lineages in wastewater, it can also be applied to analyses of genomic diversity in other microbial groups.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Águas Residuárias , Pandemias , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...