Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Bioorg Med Chem Lett ; 108: 129797, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759932

RESUMO

TGF-ß is an immunosuppressive cytokine and plays a key role in progression of cancer by inducing immunosuppression in tumor microenvironment. Therefore, inhibition of TGF-ß signaling pathway may provide a potential therapeutic intervention in treating cancers. Herein, we report the discovery of a series of novel thiazole derivatives as potent inhibitors of ALK5, a serine-threonine kinase which is responsible for TGF-ß signal transduction. Compound 29b was identified as a potent inhibitor of ALK5 with an IC50 value of 3.7 nM with an excellent kinase selectivity.

2.
Biochem Biophys Res Commun ; 704: 149707, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38428305

RESUMO

Mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 2 (ERK2) and p38α MAP kinase (p38α MAPK), regulate various cellular responses. ERK2 is a drug target for treating many diseases, such as cancer, whereas p38α has attracted much attention as a promising drug target for treating inflammatory disorders. ERK2 is a critical off-target for p38α MAPK and vice versa. In this study, an allosteric ERK2 inhibitor with a benzothiazole moiety (compound 1) displayed comparable inhibitory activity against p38α MAPK. Crystal structures of these MAPKs showed that compound 1 bound to the allosteric site of ERK2 and p38α MAPK in distinct manners. Compound 1 formed a covalent bond with Cys162 of p38α MAPK, whereas this covalent bond was absent in the ERK2 complex even though the corresponding cysteine is conserved in ERK2. Structural dissection combined with computational simulations indicated that an amino acid difference in the allosteric site is responsible for the distinct binding modes of compound 1 with ERK2 and p38α MAPK. These structural insights underline the feasibility of developing highly selective and potent ERK2 and p38α MAPK inhibitors.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Benzotiazóis/farmacologia
3.
Nat Commun ; 15(1): 220, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212328

RESUMO

Stimulator of interferon genes (STING) is critical for the type I interferon response to pathogen- or self-derived DNA in the cytosol. STING may function as a scaffold to activate TANK-binding kinase 1 (TBK1), but direct cellular evidence remains lacking. Here we show, using single-molecule imaging of STING with enhanced time resolutions down to 5 ms, that STING becomes clustered at the trans-Golgi network (about 20 STING molecules per cluster). The clustering requires STING palmitoylation and the Golgi lipid order defined by cholesterol. Single-molecule imaging of TBK1 reveals that STING clustering enhances the association with TBK1. We thus provide quantitative proof-of-principle for the signaling STING scaffold, reveal the mechanistic role of STING palmitoylation in the STING activation, and resolve the long-standing question of the requirement of STING translocation for triggering the innate immune signaling.


Assuntos
Lipoilação , Rede trans-Golgi , Rede trans-Golgi/metabolismo , Microscopia , Imagem Individual de Molécula , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Colesterol , Análise por Conglomerados , Imunidade Inata
4.
Expert Opin Ther Pat ; 33(7-8): 493-501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37735909

RESUMO

INTRODUCTION: CDC7 is a serine/threonine kinase which plays an important role in DNA replication. Inhibition of CDC7 in cancer cells causes lethal S phase or M phase progression, whereas inhibition of CDC7 in normal cells does not cause cell death and only leads to cell cycle arrest at the DNA replication checkpoint. Therefore, CDC7 has been recognized as a potential target for novel therapeutic interventions in cancers. AREAS COVERED: Patent literature claiming novel small molecule compounds inhibiting CDC7 disclosed from 2017 to 2022. EXPERT OPINION: Despite the indisputable positive impact of CDC7 as a drug target, there have been reported only a handful of chemical scaffolds as CDC7 inhibitors. Several CDC7 inhibitors have been progressed into clinical trials for cancer treatments, but they did not result in satisfactory efficacies in those trials. One possible reason for the failure might be due to the dose-limiting toxicities, and some of the observed toxicities were thought to be not related to CDC7 inhibition, suggesting it should be important to identify novel chemical scaffolds to eliminate unwanted toxicities. Another important factor is the patient stratification that would enable greater response, and the identification of such predictive biomarkers should be the key to success for the development of CDC7 inhibitors.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Humanos , Proteínas de Ciclo Celular/metabolismo , Patentes como Assunto , Proteínas Serina-Treonina Quinases , Replicação do DNA
5.
Bioorg Med Chem Lett ; 93: 129431, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544371

RESUMO

Extracellular signal-regulated kinase 2 (ERK2), a mitogen-activated protein kinase (MAPK), plays an essential role in physiological cellular processes and is a drug target for treating cancers and type 2 diabetes. A previous in silico screening study focusing on an allosteric site that plays a crucial role in substrate anchoring conferred an ERK2 inhibitor (compound 1). In this report, compound 1 was found to show high selectivity toward ERK2 compared with the nearest off-target p38α MAPK, and the crystal structure revealed that compound 1 binds to the allosteric site of ERK2. Fragment molecular orbital calculations based upon this crystal structure provided the structural basis to improve potency of compound 1 derivatives. Further computational studies uncovered that the low entropic cost of binding conferred the high selectivity of compound 1 toward ERK2 over p38α MAPK. These findings demonstrate the feasibility of developing potent and selective ERK2 inhibitors.


Assuntos
Diabetes Mellitus Tipo 2 , Proteína Quinase 1 Ativada por Mitógeno , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sítio Alostérico
6.
Arterioscler Thromb Vasc Biol ; 43(6): 927-942, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078291

RESUMO

BACKGROUND: Endothelial cell activation is tightly controlled by the balance between VEGF (vascular endothelial cell growth factor) and Notch signaling pathway. VEGF destabilizes blood vessels and promotes neovascularization, which are common features of sight-threatening ocular vascular disorders. Here, we show that BCL6B (B-cell CLL/lymphoma 6 member B protein), also known as BAZF, ZBTB28, and ZNF62, plays a pivotal role in the development of retinal edema and neovascularization. METHODS: The pathophysiological physiological role of BCL6B was investigated in cellular and animal models mimicking 2 pathological conditions: retinal vein occlusion and choroidal neovascularization. An in vitro experimental system was used in which human retinal microvascular endothelial cells were supplemented with VEGF. Choroidal neovascularization cynomolgus monkey model was generated to investigate the involvement of BCL6B in the pathogenesis. Mice lacking BCL6B or treated with BCL6B-targeting small-interfering ribose nucleic acid were examined for histological and molecular phenotypes. RESULTS: In retinal endothelial cells, the BCL6B expression level was increased by VEGF. BCL6B-deficient endothelial cells showed Notch signal activation and attenuated cord formation via blockage of the VEGF-VEGFR2 signaling pathway. Optical coherence tomography images showed that choroidal neovascularization lesions were decreased by BCL6B-targeting small-interfering ribose nucleic acid. Although BCL6B mRNA expression was significantly increased in the retina, BCL6B-targeting small-interfering ribose nucleic acid suppressed ocular edema in the neuroretina. The increase in proangiogenic cytokines and breakdown of the inner blood-retinal barrier were abrogated in BCL6B knockout (KO) mice via Notch transcriptional activation by CBF1 (C promotor-binding factor 1) and its activator, the NICD (notch intracellular domain). Immunostaining showed that Müller cell activation, a source of VEGF, was diminished in BCL6B-KO retinas. CONCLUSIONS: These data indicate that BCL6B may be a novel therapeutic target for ocular vascular diseases characterized by ocular neovascularization and edema.


Assuntos
Neovascularização de Coroide , Ácidos Nucleicos , Neovascularização Retiniana , Doenças Vasculares , Animais , Humanos , Camundongos , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Células Endoteliais/metabolismo , Macaca fascicularis/metabolismo , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/uso terapêutico , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Ribose/metabolismo , Ribose/uso terapêutico , Doenças Vasculares/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Biochem Biophys Res Commun ; 630: 30-35, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36130444

RESUMO

Casein kinase 2 (CK2) is a vital protein kinase that consists of two catalytic subunits (CK2α1 and/or CK2α2) and two regulatory subunits (CK2ß). CK2α1 is a drug target for nephritis and cancers, while CK2α2 is a serious off-target because its inhibition causes testicular toxicity. High similarity between the isozymes CK2α1 and CK2α2 make it difficult to design CK2α1-specific inhibitors. Herein, the crystal structures of CK2α1 and CK2α2 complexed with a 3-amino-pyrazole inhibitor revealed the remarkable differences in the protein-inhibitor interaction modes. This inhibitor bound to the ATP binding sites of both isozymes in apparently distinct orientations. In addition, another molecule of this inhibitor bound to CK2α1, but not to CK2α2, at the CK2ß protein-protein interface. Binding energy calculations and biochemical experiments suggested that this inhibitor possesses the conventional ATP-competitive characteristics with moderate allosteric function in a molecular glue mechanism. These results will assist the potential design of potent and selective CK2α1 inhibitors.


Assuntos
Caseína Quinase II , Isoenzimas , Pirazóis/farmacologia , Trifosfato de Adenosina , Caseína Quinase II/metabolismo , Isoenzimas/metabolismo , Inibidores de Proteínas Quinases/farmacologia
8.
Biochem Biophys Res Commun ; 593: 73-78, 2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35063772

RESUMO

Extracellular signal-regulated kinase 2 (ERK2) controls vital physiological processes involving proliferation and differentiation and is a drug target molecule for many diseases such as cancers. In silico screening focusing on an allosteric site that plays a crucial role in substrate anchoring conferred an ERK2 inhibitor (compound 1). However, a competitive binding assay indicated that compound 1 did not bind to the allosteric site. Here, the crystal structure of ERK2 in complex with compound 1 revealed a novel binding site. This finding demonstrates the feasibility of developing new types of ERK2 inhibitors.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sítio Alostérico , Sítios de Ligação , Ligação Competitiva , Cristalografia por Raios X , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosforilação , Conformação Proteica
9.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 12): 459-464, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866601

RESUMO

Eukaryotic protein kinases contain an Asp-Phe-Gly (DFG) motif, the conformation of which is involved in controlling the catalytic activity, at the N-terminus of the activation segment. The motif can be switched between active-state (DFG-in) and inactive-state (DFG-out) conformations: however, the mechanism of conformational change is poorly understood, partly because there are few reports of the DFG-out conformation. Here, a novel crystal structure of nonphosphorylated human mitogen-activated protein kinase kinase 1 (MEK1; amino acids 38-381) complexed with ATP-γS is reported in which MEK1 adopts the DFG-out conformation. The crystal structure revealed that the structural elements (the αC helix and HRD motif) surrounding the active site are involved in the formation/stabilization of the DFG-out conformation. The ATP-γS molecule was bound to the canonical ATP-binding site in a different binding mode that has never been found in previously determined crystal structures of MEK1. This novel ATP-γS binding mode provides a starting point for the design of high-affinity inhibitors of nonphosphorylated inactive MEK1 that adopts the DFG-out conformation.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Quinases , Cristalografia por Raios X , Humanos , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química
10.
J Med Chem ; 64(19): 14153-14164, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34607435

RESUMO

CDC7, a serine-threonine kinase, plays conserved and important roles in regulation of DNA replication and has been recognized as a potential anticancer target. We report here the optimization of a series of furanone analogues starting from compound 1 with a focus on ADME properties suitable for clinical development. By replacing the 2-chlorobenzene moiety in 1 with various aliphatic groups, we identified compound 24 as a potent CDC7 inhibitor with excellent kinase selectivity and favorable oral bioavailability in multiple species. Oral administration of 24 demonstrated robust in vivo antitumor efficacy in a colorectal cancer xenograft model. Compound 24 (AS-0141) is currently in phase I clinical trials for the treatment of solid cancers.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Neoplasias do Colo/tratamento farmacológico , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Relação Estrutura-Atividade
11.
J Med Chem ; 64(19): 14129-14141, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34529443

RESUMO

Although Bruton's tyrosine kinase (BTK) has been recognized as a validated drug target for the treatment of B-cell malignances, the emergence of clinical resistance to the first-generation covalent BTK inhibitors is becoming a serious concern. As a part of our effort to develop noncovalent BTK inhibitors, a series of novel pyrrolopyrimidines was identified as noncovalent inhibitors of both the wild-type and C481S mutant BTKs. Subsequent lead optimization led to the identification of an orally available, potent, and selective BTK inhibitor 13f (AS-1763) as a next-generation noncovalent BTK inhibitor. With significant efficacies in vivo tumor xenograft models, AS-1763 has advanced to phase 1 clinical trials.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Administração Oral , Tirosina Quinase da Agamaglobulinemia/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
12.
Sci Rep ; 11(1): 11996, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099821

RESUMO

Stimulator of interferon genes (STING) is essential for the type I interferon response induced by microbial DNA from virus or self-DNA from mitochondria/nuclei. In response to emergence of such DNAs in the cytosol, STING translocates from the endoplasmic reticulum to the Golgi, and activates TANK-binding kinase 1 (TBK1) at the trans-Golgi network (TGN). Activated TBK1 then phosphorylates STING at Ser365, generating an interferon regulatory factor 3-docking site on STING. How this reaction proceeds specifically at the TGN remains poorly understood. Here we report a cell-free reaction in which endogenous STING is phosphorylated by TBK1. The reaction utilizes microsomal membrane fraction prepared from TBK1-knockout cells and recombinant TBK1. We observed agonist-, TBK1-, "ER-to-Golgi" traffic-, and palmitoylation-dependent phosphorylation of STING at Ser365, mirroring the nature of STING phosphorylation in vivo. Treating the microsomal membrane fraction with sphingomyelinase or methyl-ß-cyclodextrin, an agent to extract cholesterol from membranes, suppressed the phosphorylation of STING by TBK1. Given the enrichment of sphingomyelin and cholesterol in the TGN, these results may provide the molecular basis underlying the specific phosphorylation reaction of STING at the TGN.


Assuntos
Colesterol/metabolismo , Misturas Complexas/metabolismo , DNA/metabolismo , Fosforilação/efeitos dos fármacos , Esfingomielinas/metabolismo , Sistemas CRISPR-Cas , Citosol/metabolismo , Citosol/ultraestrutura , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Complexo de Golgi/metabolismo , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Lipoilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Esfingomielina Fosfodiesterase/metabolismo , beta-Ciclodextrinas/metabolismo
13.
Bioorg Med Chem Lett ; 43: 128056, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33892104

RESUMO

p38α mitogen activated protein kinase (MAPK) plays important roles in multiple cellular functions by phosphorylating a wide variety of substrates, and therefore, p38α MAPK has been considered as an important drug target. In this study, we designed peptide-based inhibitors for p38α MAPK, which can only inhibit the Smad3 phosphorylation specifically, by targeting the KIM binding site of p38α MAPK. Peptide 6 showed a significant inhibitory potency for the Smad3 phosphorylation by p38α MAPK. Peptide 6 showed no ATP dependency, and did not inhibit the phosphorylation of other substrates by p38α MAPK. The discovery of peptide 6 by targeting the KIM binding site likely provide an opportunity for the discovery of a novel class of allosteric and substrate-specific p38α MAPK inhibitors.


Assuntos
Peptídeos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteína Smad3/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteína Smad3/metabolismo , Relação Estrutura-Atividade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33400690

RESUMO

Osteosarcoma (OS) is an aggressive mesenchymal tumor for which no molecularly targeted therapies are available. We have previously identified TRAF2- and NCK-interacting protein kinase (TNIK) as an essential factor for the transactivation of Wnt signal target genes and shown that its inhibition leads to eradication of colorectal cancer stem cells. The involvement of Wnt signaling in the pathogenesis of OS has been implicated. The aim of the present study was to examine the potential of TNIK as a therapeutic target in OS. RNA interference or pharmacological inhibition of TNIK suppressed the proliferation of OS cells. Transcriptome analysis suggested that a small-molecule inhibitor of TNIK upregulated the expression of genes involved in OS cell metabolism and downregulated transcription factors essential for maintaining the stem cell phenotype. Metabolome analysis revealed that this TNIK inhibitor redirected the metabolic network from carbon flux toward lipid accumulation in OS cells. Using in vitro and in vivo OS models, we confirmed that TNIK inhibition abrogated the OS stem cell phenotype, simultaneously driving conversion of OS cells to adipocyte-like cells through induction of PPARγ. In relation to potential therapeutic targeting in clinical practice, TNIK was confirmed to be in an active state in OS cell lines and clinical specimens. From these findings, we conclude that TNIK is applicable as a potential target for treatment of OS, affecting cell fate determination.


Assuntos
Adipócitos/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estudos de Viabilidade , Feminino , Humanos , Metabolômica , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Osteossarcoma/genética , Osteossarcoma/patologia , PPAR gama/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Br J Cancer ; 124(1): 228-236, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33244122

RESUMO

BACKGROUND: Metastasis is the primary cause of death in cancer patients, and its management is still a major challenge. Epithelial to mesenchymal transition (EMT) has been implicated in the process of cancer metastasis, and its pharmacological interference holds therapeutic promise. METHODS: Traf2- and Nck-interacting kinase (TNIK) functions as a transcriptional coregulator of Wnt target genes. Given the convergence of Wnt and transforming growth factor-ß (TGFß) signalling, we examined the effects of a small-molecule TNIK inhibitor (named NCB-0846) on the TGFß1-induced EMT of lung cancer cells. RESULTS: NCB-0846 inhibited the TGFß1-induced EMT of A549 cells. This inhibition was associated with inhibition of Sma- and Mad-Related Protein-2/3 (SMAD2/3) phosphorylation and nuclear translocation. NCB-0846 abolished the lung metastasis of TGFß1-treated A549 cells injected into the tail veins of immunodeficient mice. The inhibition of EMT was mediated by suppression of the TGFß receptor type-I (TGFBR1) gene, at least partly through the induction of microRNAs targeting the TGFBR1 transcript [miR-320 (a, b and d) and miR-186]. CONCLUSIONS: NCB-0846 pharmacologically blocks the TGFß/SMAD signalling and EMT induction of lung cancer cells by transcriptionally downregulating TGFBRI expression, representing a potentially promising approach for prevention of metastasis in lung cancer patients.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Fator de Crescimento Transformador beta1/metabolismo , Células A549 , Animais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancers (Basel) ; 12(5)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429395

RESUMO

BACKGROUND: The treatment of patients with metastatic synovial sarcoma is still challenging, and the development of new molecular therapeutics is desirable. Dysregulation of Wnt signaling has been implicated in synovial sarcoma. Traf2-and-Nck-interacting kinase (TNIK) is an essential transcriptional co-regulator of Wnt target genes. We examined the efficacy of a small interfering RNA (siRNA) to TNIK and a small-molecule TNIK inhibitor, NCB-0846, for synovial sarcoma. METHODS: The expression of TNIK was determined in 20 clinical samples of synovial sarcoma. The efficacy of NCB-0846 was evaluated in four synovial sarcoma cell lines and a mouse xenograft model. RESULTS: We found that synovial sarcoma cell lines with Wnt activation were highly dependent upon the expression of TNIK for proliferation and survival. NCB-0846 induced apoptotic cell death in synovial sarcoma cells through blocking of Wnt target genes including MYC, and oral administration of NCB-846 induced regression of xenografts established by inoculation of synovial sarcoma cells. DISCUSSION: It has become evident that activation of Wnt signaling is causatively involved in the pathogenesis of synovial sarcoma, but no molecular therapeutics targeting the pathway have been approved. This study revealed for the first time the therapeutic potential of TNIK inhibition in synovial sarcoma.

17.
Bioorg Med Chem Lett ; 30(1): 126775, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31699609

RESUMO

The production of TrkA-selective inhibitors is considerably difficult because the kinase domains of TrkA and its isoforms TrkB/C have highly homologous amino acid sequences. Here we describe the structural basis for the acquisition of selectivity for a isoform-selective TrkA inhibitor, namely compound V1. The X-ray structure revealed that V1 acts as a molecular glue to stabilize the symmetrical dimer of the TrkA kinase domains. V1 binds to the ATP-binding site and simultaneously engages in the dimeric interface of TrkA. The region of the dimeric interface in TrkA is not conserved in TrkB/C; thus, dimer formation may be a novel mechanism for the production of selective TrkA inhibitors. The biochemical and biophysical assay results confirmed that V1 selectively inhibited TrkA and induced the dimer formation of TrkA, but not TrkB. The binding pocket at the TrkA dimer interface can be used for the production of new isoform-selective TrkA inhibitors.


Assuntos
Isoformas de Proteínas/metabolismo , Receptor trkA/metabolismo , Sequência de Aminoácidos , Humanos , Modelos Moleculares
18.
Biochem Biophys Res Commun ; 521(1): 106-112, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31635803

RESUMO

Mitogen-activated protein kinase kinase 4 (MAP2K4) plays a critical role in regulating the stress-activated protein kinase signaling cascade. A small angle X-ray scattering experiment, a powerful technique for analyzing a solution structure cleared from the structural artifacts due to crystal packing, provided the ensemble structures of human non-phosphorylated MAP2K4 in three states involving the apo form, the binary complex with an ATP analogue, and the ternary complex with the ATP analogue and substrate peptide. These ensemble structures provided more detailed mechanisms for regulating MAP2K4 in addition to those delineated only by the crystal structures in three states.


Assuntos
MAP Quinase Quinase 4/análise , MAP Quinase Quinase 4/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Humanos , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
19.
Sci Rep ; 9(1): 18622, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819079

RESUMO

The conserved serine-threonine kinase, Cdc7, plays a crucial role in initiation of DNA replication by facilitating the assembly of an initiation complex. Cdc7 is expressed at a high level and exhibits significant kinase activity not only during S-phase but also during G2/M-phases. A conserved mitotic kinase, Aurora B, is activated during M-phase by association with INCENP, forming the chromosome passenger complex with Borealin and Survivin. We show that Cdc7 phosphorylates and stimulates Aurora B kinase activity in vitro. We identified threonine-236 as a critical phosphorylation site on Aurora B that could be a target of Cdc7 or could be an autophosphorylation site stimulated by Cdc7-mediated phosphorylation elsewhere. We found that threonines at both 232 (that has been identified as an autophosphorylation site) and 236 are essential for the kinase activity of Aurora B. Cdc7 down regulation or inhibition reduced Aurora B activity in vivo and led to retarded M-phase progression. SAC imposed by paclitaxel was dramatically reversed by Cdc7 inhibition, similar to the effect of Aurora B inhibition under the similar situation. Our data show that Cdc7 contributes to M-phase progression and to spindle assembly checkpoint most likely through Aurora B activation.


Assuntos
Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Survivina/metabolismo , Treonina/química , Animais , Ciclo Celular , Divisão Celular , Linhagem Celular Tumoral , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Insetos , Mitose , Mutação , Fosforilação , Ratos , Fuso Acromático/metabolismo
20.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 7): 515-519, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31282872

RESUMO

Protein kinase CK2a1 is a serine/threonine kinase that plays a crucial role in the growth, proliferation and survival of cells and is a well known target for tumour and glomerulonephritis therapies. Here, the crystal structure of the kinase domain of CK2a1 complexed with 5-iodotubercidin (5IOD), an ATP-mimetic inhibitor, was determined at 1.78 Šresolution. The structure shows distinct structural features and, in combination with a comparison of the crystal structures of five off-target kinases complexed with 5IOD, provides valuable information for the development of highly selective inhibitors.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Sequência de Aminoácidos , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Cristalografia por Raios X , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Eletricidade Estática , Tubercidina/análogos & derivados , Tubercidina/química , Tubercidina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...