Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Gait Posture ; 111: 65-74, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653178

RESUMO

BACKGROUND: Clinical gait analysis (CGA) is a systematic approach to comprehensively evaluate gait patterns, quantify impairments, plan targeted interventions, and evaluate the impact of interventions. However, international standards for CGA are currently lacking, resulting in various national initiatives. Standards are important to ensure safe and effective healthcare practices and to enable evidence-based clinical decision-making, facilitating interoperability, and reimbursement under national healthcare policies. Collaborative clinical and research work between European countries would benefit from common standards. RESEARCH OBJECTIVE: This study aimed to review the current laboratory practices for CGA in Europe. METHODS: A comprehensive survey was conducted by the European Society for Movement Analysis in Adults and Children (ESMAC), in close collaboration with the European national societies. The survey involved 97 gait laboratories across 16 countries. The survey assessed several aspects related to CGA, including equipment used, data collection, processing, and reporting methods. RESULTS: There was a consensus between laboratories concerning the data collected during CGA. The Conventional Gait Model (CGM) was the most used biomechanical model for calculating kinematics and kinetics. Respondents also reported the use of video recording, 3D motion capture systems, force plates, and surface electromyography. While there was a consensus on the reporting of CGA data, variations were reported in training, documentation, data preprocessing and equipment maintenance practices. SIGNIFICANCE: The findings of this study will serve as a foundation for the development of standardized guidelines for CGA in Europe.

2.
Front Sports Act Living ; 5: 1134702, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521101

RESUMO

Introduction: Football presents a high rate of lower limb injuries and high incidence of Anterior Cruciate Ligament (ACL) rupture, especially in women. Due to this there is the need to optimize current prevention programs. This study aims to verify the possibility to reduce the biomechanical risk factors associated with ACL injury, through the application of proprioceptive stimulation by means of the Equistasi® device. Methods: Ten elite female footballers were enrolled and received the device for 4 weeks (5 days/week, 1h/day). Athletes were assessed directly on-field at four time points: T0 and T1 (evaluation without and with the device), T2 (after 2 weeks), T4 (after 4 weeks) while performing two different tasks: Romberg Test, and four sidestep cutting maneuvers bilaterally. Seven video cameras synchronized with a plantar pressure system were used, thirty double colored tapes were applied on anatomical landmarks, and three dimensional coordinates reconstructed. Vertical ground reaction forces and center of pressure data were extracted from the plantar pressure insoles. Hip, knee, and ankle flexion-extension angles and moments were computed as well as abd-adduction joint torques. From the Romberg Test both center of pressure descriptive variables and frequency analysis parameters were extracted. Each variable was compared among the different time frames, T1, T2 and T4, through Friedman Test for non-parametric repeated measures (p<0.05); Wilcoxon Signed Rank Test was used for comparing variables between T0 and T1 (p<0.05) and across the different time frames as follows: T1-T2, T2-T4 and T1-T4. Results: Statistically significant differences in both posturographic and biomechanical variables between the assessment at T0 and T1 were detected. Reduced hip and knee abduction torques were revealed in association with reduced both ground reaction forces and ankle dorsiflexion torque from T1 up to T4. Discussion: The proprioceptive stimuli showed to have the potential to improve cutting biomechanics mainly with respect to the ligament and quadriceps dominance theories. Results of the present study, even if preliminary and on a small sample size, could be considered promising towards the inclusion of proprioceptive training in injury prevention programs.

4.
Sports (Basel) ; 10(6)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35736828

RESUMO

When pedaling, the excessive pressure on the seat has the potential to produce injuries and this can strongly affect sport performance. Recently, a large effort has been dedicated to the reduction of the pressure occurring at the saddle region. Our work aims to verify the possibility of modifying cyclists' pedaling posture, and consequently the pressure on the saddle, by applying a proprioceptive stimulus. Equistasi® (Equistasi srl, Milano, Italy) is a wearable device that emits focal mechanical vibrations able to transform the body temperature into mechanical vibratory energy via the embedded nanotechnology. The data acquired through a pressure mapping system (GebioMized®) on 70 cyclists, with and without Equistasi®, were analyzed. Pedaling in three positions was recorded on a spin trainer: with hands on the top, hands on the drop handlebar, and hands on the lever. Average force, contact surface, and average and maximum pressure each in different regions of the saddle were analyzed, as well as integral pressure time and center of pressure. In the comparisons between hands positions, overall pressure and force variables were significantly lower in the drop-handlebar position at the rear saddle (p < 0.03) and higher in hand-on-lever and drop-handlebar positions at the front saddle (p < 0.01). When applying the Equistasi device, the contact surface was significantly larger in all hand positions (p < 0.05), suggesting that focal stimulation of the lumbar proprioceptive system can change cyclists' posture.

5.
Med Biol Eng Comput ; 60(6): 1659-1673, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35428958

RESUMO

The aim of this work was twofold: on one side to determine the most suitable parameters of surface electromyography (sEMG) to classify diabetic subjects with and without neuropathy and discriminate them from healthy controls and second to assess the role of the task acquired in the classification process. For this purpose 30 subjects were examined (10 controls, 10 diabetics with and 10 without neuropathy) whilst walking and stair ascending and descending. The electrical activity of six muscles was recorded bilaterally through a 16-channel sEMG system synchronised with a stereophotogrammetric system: Rectus Femoris, Gluteus Medius, Tibialis Anterior, Peroneus Longus, Gastrocnemius Lateralis and Extensor Digitorum. Spatiotemporal parameters of gait and stair climbing and the following sEMG parameters were extracted: signal envelope, activity duration, timing of activation and deactivation. A hierarchical clustering algorithm was applied to the whole set of parameters with different distances and linkage methods. Results showed that only by applying the Ward agglomerative hierarchical clustering (Hamming distance) to the all set of parameters extracted from both tasks, 5 well-separated clusters were obtained: cluster 3 included only DS subjects, cluster 2 and 4 only controls and cluster 1 and 5 only DNS subjects. This method could be used for planning rehabilitation treatments.


Assuntos
Diabetes Mellitus , Caminhada , Análise por Conglomerados , Eletromiografia/métodos , Marcha/fisiologia , Humanos , Músculo Esquelético/fisiologia , Caminhada/fisiologia
6.
Sensors (Basel) ; 22(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35214255

RESUMO

Parkinson's disease (PD) is a neurological disorder that mainly affects the motor system. Among other symptoms, hypomimia is considered one of the clinical hallmarks of the disease. Despite its great impact on patients' quality of life, it remains still under-investigated. The aim of this work is to provide a quantitative index for hypomimia that can distinguish pathological and healthy subjects and that can be used in the classification of emotions. A face tracking algorithm was implemented based on the Facial Action Coding System. A new easy-to-interpret metric (face mobility index, FMI) was defined considering distances between pairs of geometric features and a classification based on this metric was proposed. Comparison was also provided between healthy controls and PD patients. Results of the study suggest that this index can quantify the degree of impairment in PD and can be used in the classification of emotions. Statistically significant differences were observed for all emotions when distances were taken into account, and for happiness and anger when FMI was considered. The best classification results were obtained with Random Forest and kNN according to the AUC metric.


Assuntos
Doença de Parkinson , Emoções , Face , Expressão Facial , Humanos , Doença de Parkinson/diagnóstico , Qualidade de Vida
7.
Comput Methods Biomech Biomed Engin ; 25(1): 14-26, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33998843

RESUMO

Electromyography (EMG)-driven neuromusculoskeletal modeling (NMSM) enables simulating the mechanical function of multiple muscle-tendon units as controlled by nervous system in the generation of complex movements. In the context of clinical assessment this may enable understanding biomechanical factor contributing to gait disorders such as one induced by Parkinson's disease (PD). In spite of the challenges in the development of patient-specific models, this preliminary study aimed at establishing a feasible and noninvasive experimental and modeling pipeline to be adopted in clinics to detect PD-induced gait alterations. Four different NMSM have been implemented for three healthy controls using CEINMS, an OpenSim-compatible toolbox. Models differed in the EMG-normalization methods used for calibration purposes (i.e. walking trial normalization and maximum voluntary contraction normalization) and in the set of experimental EMGs used for the musculotendon-unit mapping (i.e. 4 channels vs. 15 channels). Model accuracy assessment showed no statistically significant differences between the more complete model (non-clinically viable) and the proposed reduced one (clinically viable). The clinically viable reduced model was systematically applied on a dataset including ten PD's and thirteen healthy controls. Results showed significant differences in the neuromuscular control strategy of the PD group in term of muscle forces and joint torques. Indeed, PD patients displayed a significantly lower magnitude on force production and revealed a higher amount of force variability with the respect of the healthy controls. The estimated variables could become a measurable biomechanical outcome to assess and track both disease progression and its impact on gait in PD subjects.


Assuntos
Doença de Parkinson , Fenômenos Biomecânicos , Eletromiografia , Marcha , Humanos , Modelos Biológicos , Músculo Esquelético
8.
Aging Clin Exp Res ; 34(1): 137-149, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34115325

RESUMO

BACKGROUND: Dual task influences postural control. A cognitive task seems to reduce muscle excitation during a postural balance, especially in older adults (OA). AIM: The aim of this study is to evaluate the effect of three cognitive tasks on muscle excitation and static postural control in OA and young adults (YA) in an upright posture maintenance task. METHODS: 31 YA and 30 OA were evaluated while performing a modified Romberg Test in five different conditions over a force plate: open eyes, closed eyes, spatial-memory brooks' test, counting backwards aloud test and mental arithmetic task. The surface electromyographic signals of Tibialis anterior (TA), Lateral Gastrocnemius (GL), Peroneus Longus (PL), and Erector Spinae (ES) was acquired with an 8-channel surface electromyographic system. The following variables were computed for both the electromyographic analysis and the posturographic assessment: Root mean square (RMS), centre of pressure (CoP) excursion (Path) and velocity, sway area, RMS of the CoP Path and 50%, 95% of the power frequency. Mixed ANOVA was used to detect differences with group membership as factor between and type of task as within. The analysis was performed on the differences between each condition from OE. RESULTS: An interaction effect was found for Log (logarithmic) Sway Area. A main effect for task emerged on all posturographic variables except Log 95% frequencies and for Log PL and ES RMS. A main effect for group was never detected. DISCUSSION AND CONCLUSION: This study indicates a facilitating effect of mental secondary task on posturographic variables. Non-silent secondary task causes increase in ES and TA muscle activation and a worsening in static postural control performance.


Assuntos
Músculo Esquelético , Equilíbrio Postural , Idoso , Cognição , Humanos
9.
Sensors (Basel) ; 21(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34300485

RESUMO

Fragile X Syndrome (FXS), the leading form of inherited intellectual disability and autism, is characterized by specific musculoskeletal conditions. We hypothesized that gait analysis in FXS could be relevant for the evaluation of motor control of gait, and help the understanding of a possible correlation between functional and intellectual abilities. Typical deficits in executive control and hyperactivity have hampered the use of standard gait analysis. The aim of our study was to quantitatively assess musculoskeletal alterations in FXS children in standard ambulatory conditions, in a friendly environment. Ten FXS children and sixteen controls, with typical neurodevelopment, were evaluated through four synchronized video cameras and surface electromyography; lower limb joints rotations, spatiotemporal parameters, duration of muscle contraction, activation timing and envelope peaks were determined. Reliability and repeatability of the video based kinematics analysis was assessed with respect to stereophotogrammetry. The Kruskal-Wallis Test (p < 0.05) or SPM1D were used to compare different groups of subjects. Results show a consistently altered gait pattern associated with abnormal muscle activity in FXS subjects: reduced knee and excessive hip and ankle flexion, and altered duration and activity onset on all the recorded muscles (Rectus/Biceps Femoris, Tibialis Anterior, Gastrocnemius Lateralis). Results of this study could help with planning personalized rehabilitations.


Assuntos
Marcha , Músculo Esquelético , Fenômenos Biomecânicos , Criança , Eletromiografia , Estudos de Viabilidade , Humanos , Amplitude de Movimento Articular , Reprodutibilidade dos Testes
10.
Med Biol Eng Comput ; 59(7-8): 1403-1415, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34085136

RESUMO

Axial disorders, including postural deformities, postural instability, and gait disturbances, are among the most disabling symptoms of Parkinson's disease (PD). Equistasi®, a wearable proprioceptive stabilizer device, has been proposed as neurological rehabilitative device for this set of symptoms. To investigate the effects of the device on gait and balance, 24 participants affected by PD were enrolled in this crossover double-dummy, randomized, controlled study. Subjects were assessed four times before and after 8 weeks treatment with either active or placebo device; one-month wash-out was taken between treatments, in a 20-week timeframe. Gait analysis and instrumented Romberg test were performed with the aid of a sterofotogrammetric system and two force plates. Joint kinematics, spatiotemporal parameters of gait and center of pressure parameters were extracted. Paired T-test (p < 0.05) was adopted after evidence of normality to compare the variables across different acquisition sessions; Wilcoxon was adopted for non-normal distributions. Before and after the treatment with the active device, statistically significant improvements were observed in trunk flexion extension and in the ankle dorsi-plantarflexion. Regarding balance assessment, significant improvements were reported at the frequencies corresponding to vestibular system. These findings may open new possibilities on PD's rehabilitative interventions. Research question, tailored design of the study, experimental acquisition overview, main findings, and conclusions.


Assuntos
Doença de Parkinson , Tornozelo , Fenômenos Biomecânicos , Marcha , Humanos , Equilíbrio Postural
11.
Sensors (Basel) ; 21(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669674

RESUMO

The quantification of plantar pressure distribution is widely done in the diagnosis of lower limbs deformities, gait analysis, footwear design, and sport applications. To date, a number of pressure insole layouts have been proposed, with different configurations according to their applications. The goal of this study is to assess the validity of a 16-sensors (1.5 × 1.5 cm) pressure insole to detect plantar pressure distribution during different tasks in the clinic and sport domains. The data of 39 healthy adults, acquired with a Pedar-X® system (Novel GmbH, Munich, Germany) during walking, weight lifting, and drop landing, were used to simulate the insole. The sensors were distributed by considering the location of the peak pressure on all trials: 4 on the hindfoot, 3 on the midfoot, and 9 on the forefoot. The following variables were computed with both systems and compared by estimating the Root Mean Square Error (RMSE): Peak/Mean Pressure, Ground Reaction Force (GRF), Center of Pressure (COP), the distance between COP and the origin, the Contact Area. The lowest (0.61%) and highest (82.4%) RMSE values were detected during gait on the medial-lateral COP and the GRF, respectively. This approach could be used for testing different layouts on various applications prior to production.


Assuntos
Sapatos , Caminhada , Adulto , Fenômenos Biomecânicos , Marcha , Alemanha , Humanos , Projetos Piloto , Pressão , Dispositivos Eletrônicos Vestíveis
12.
Sensors (Basel) ; 21(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466838

RESUMO

The aim of this study was to investigate the effects of Equistasi®, a wearable device, on the relationship between muscular activity and postural control changes in a sample of 25 Parkinson's disease (PD) subjects. Gait analysis was carried out through a six-cameras stereophotogrammetric system synchronized with two force plates, an eight-channel surface electromyographic system, recording the activity of four muscles bilaterally: Rectus femoris, tibialis anterior (TA), biceps femoris, and gastrocnemius lateralis (GL). The peak of the envelope (PoE) and its occurrence within the gait cycle (position of the peak of the envelope, PPoE) were calculated. Frequency-domain posturographic parameters were extracted while standing still on a force plate in eyes open and closed conditions for 60 s. After the treatment with Equistasi®, the mid-low (0.5-0.75) Hz and mid-high (0.75-1 Hz) components associated with the vestibular and somatosensory systems, PoE and PPoE, displayed a shift toward the values registered on the controls. Furthermore, a correlation was found between changes in proprioception (power spectrum frequencies during the Romberg Test) and the activity of GL, BF (PoE), and TA (PPoE). Results of this study could provide a quantitative estimation of the effects of a neurorehabilitation device on the peripheral and central nervous system in PD.


Assuntos
Doença de Parkinson , Equilíbrio Postural , Idoso , Eletromiografia , Humanos , Músculo Esquelético , Propriocepção
13.
Sensors (Basel) ; 22(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35009800

RESUMO

Anterior cruciate ligament (ACL) lesion represents one of the most dramatic sport injuries. Even though clinical screenings aiming at identifying subjects at risk of injuries are gaining popularity, the use of sophisticated equipment still represents a barrier towards their widespread use. This study aimed to test both reliability and repeatability of a new methodology to assess lower limb joints kinematics and kinetics directly on field with the aid of video cameras and plantar pressure insoles. Ten athletes and one case study (post ACL surgery) were assessed in a gait laboratory, while performing double leg squats, through the simultaneous acquisition of stereophotogrammetry, force plates, commercial video cameras and plantar pressure insoles. Different sources of errors were investigated and both reliability and repeatability analysis performed. Minimum and maximum RMSE values of 0.74% (right knee joint center trajectory) and 64.51%, respectively (ankle dorsi-plantarflexion moment), were detected. Excellent to good correlation was found for the majority of the measures, even though very poor and inverse between-trials correlation was found on a restricted number of trials especially for the ankle dorsi-plantarflexion moment. These findings could be used in combination with already available screening tools in order to provide more repeatable results.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Fenômenos Biomecânicos , Humanos , Cinética , Articulação do Joelho , Extremidade Inferior , Reprodutibilidade dos Testes
14.
Sensors (Basel) ; 20(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272810

RESUMO

Malocclusion during childhood may affect both morphology and masticatory function and could greatly affect the subsequent growth and development of the jaws and face. The purpose of this study was to evaluate the efficiency of surface electromyography in describing the effects of the rapid palatal expansion (RPE) on Masseter (M) and Temporalis Anterior (T) muscles' activity in 53 children with different types of malocclusion: bilateral posterior crossbite (BPcb), underdeveloped maxillary complex without crossbite (NOcb) and unilateral posterior crossbite on the right (UPCBr) and on the left (UPCBl). The muscular activities during chewing tasks were assessed bilaterally before and after RPE application and three months after removal. Both the envelope's peak (µV) and its occurrence (% of chewing task) were extracted from the surface electromyography signal. Our results showed the presence of statistically significant differences (p < 0.05) on temporomandibular joint muscles, across different assessments, in all the tested populations of subjects. Surface electromyography demonstrated a relationship between the correction of a maxillary transverse discrepancy and the restoration of a muscle's activation patterns comparable to healthy subjects for both T and M.


Assuntos
Eletromiografia , Má Oclusão/fisiopatologia , Criança , Feminino , Humanos , Masculino , Músculo Masseter/fisiologia , Técnica de Expansão Palatina , Músculo Temporal/fisiologia
15.
Gait Posture ; 79: 33-40, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32334348

RESUMO

BACKGROUND: It is well recognized that diabetes and peripheral neuropathy have a detrimental effect on gait. However, there are large variations in the results of studies addressing this aspect due to the heterogeneity of diabetic population in relation to presence and severity of diabetes complications. The aim of this study is to adopt an unsupervised classification technique to better elucidate the gait changes throughout the entire spectrum of diabetes and neuropathy. METHODS: Sixty subjects were assessed and classified into four groups using a fuzzy logic model: 13 controls (55 ± 7years), 18 diabetics subjects without neuropathy (59 ± 6 years, 11 ± 7 diabetes years), 7 with mild neuropathy (56 ± 4years, 19 ± 7 diabetes years), and 22 with moderate to severe neuropathy (57 ± 5 years, 14 ± 8 diabetes years). Data were gathered by six infrared cameras at 100 Hz regarding lower limb joint kinematics (angles and angular velocities) and the relative phase for the hip-ankle, hip-knee, and knee-ankle were calculated. The K-means clustering algorithm was adopted to classify subjects considering the whole kinematics time series. A one-way ANOVA test was used to compare both clinical and kinematics parameters across clusters. RESULTS: Only the classification based on the intralimb coordination variables succeeded in defining 5 well separated clusters with the following clinical characteristics: controls were grouped mainly in Cluster 2, diabetics in Cluster 4, and neuropathic subjects in Cluster 5 (which included various degrees of severity). Hip-ankle coordination in Clusters 4 and 5 were significantly different (p < 0.05) with respect to Cluster 2, mainly in the stance phase. During the swing phase, differences were observed in the ankle-knee coordination (p < 0.05) across clusters. CONCLUSION: Classification based on intralimb coordination patterns succeeded in efficiently categorize gait alterations in diabetic subjects. It can be speculated that variables extracted from sagittal plane kinematics might be adopted as a support to clinical decision making in diabetes.


Assuntos
Diabetes Mellitus/fisiopatologia , Nefropatias Diabéticas/fisiopatologia , Extremidade Inferior/fisiopatologia , Caminhada , Articulação do Tornozelo/fisiopatologia , Fenômenos Biomecânicos , Análise por Conglomerados , Feminino , Análise da Marcha , Articulação do Quadril/fisiopatologia , Humanos , Articulação do Joelho/fisiopatologia , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso Periférico/fisiopatologia
16.
Eur J Paediatr Neurol ; 23(6): 808-818, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31582194

RESUMO

OBJECTIVE: To quantify gait abnormalities in people with Dravet syndrome (DS). METHODS: Individuals with a confirmed diagnosis of DS were enrolled, and stratified according to knee flexion at initial contact (IC) and range of motion (ROM) during stance (atypical crouch: knee flexion >20° at IC and knee ROM >15° during stance; straight: knee flexion <20° at IC). A 1D ANOVA (α = 0.05) was used to test statistical differences among the joint kinematics and spatio-temporal parameters of the cohort and an age-matched control group. Clinical (neurological and orthopaedic evaluation) and anamnestic data (seizure type, drugs, genetic mutation) were collected; distribution between the two gait phenotypes was assessed with the Fisher exact test and, for mutation, with the chi-squared test (p < 0.05). Linear regression between maximum knee flexion and normalised walking speed was calculated. RESULTS: Seventy-one subjects were enrolled and evaluated with instrumented gait analysis. Fifty-two were included in final analysis (mean age 13.8 ± 7.3; M 26). Two gait patterns were detected: an atypical crouch gait (34.6%) with increased ankle, knee and hip flexion during stance, and reduced walking speed and stride length not associated with muscle-tendon retractions; and a pattern resembling those of healthy age-matched controls, but still showing reduced walking speed and stride length. No differences in clinical or anamnestic data emerged between the two groups. SIGNIFICANCE: Objectively quantified gait in DS shows two gait patterns with no clear-cut relation to clinical data. Kinematics abnormalities may be related to stabilization issues. These findings may guide rehabilitative and preventive measures.


Assuntos
Epilepsias Mioclônicas/complicações , Transtornos Neurológicos da Marcha/etiologia , Adolescente , Fenômenos Biomecânicos , Criança , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Articulação do Joelho , Masculino
17.
Front Neurol ; 10: 998, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620071

RESUMO

Objective: The object of the study was to evaluate the efficacy of Proprioceptive Focal Stimulation on Gait in middle-advanced Parkinson (PD) patients by a crossover, randomized, double Blind double dummy study using Equistasi®, a nano-technological device of the dimension of a plaster which generates High Frequency Vibration (FV). Background: The efficacy of Gait Analysis (GA) on evaluating gait modification on Parkinson's disease (PD) Patients is already well-known. Therefore, GA was recorded in a group of PD patients using Equistasi® device and its placebo. Methods: Forty PD patients on optimal therapy were enrolled in the study. Patients were randomly assigned to receive active or sham stimulation for 8 weeks and, following a wash-out period, switched to an additional 8-week period with the reverse intervention. GA was performed at baseline and at the end of both 8-weeks treatment periods Clinical state was monitored by MDUPDRS part III. Results: Active stimulation induced a significant improvement in Mean Velocity (Velocity), Stride Length (SL), Stance (STA), and Double Support (DST) percentage, both in left and right stride. The ANOVA analysis using H&Y stage as a factor, showed that DST and MDUPDRS III scores improved significantly more in the more severely affected subjects. Conclusions: The findings obtained in this randomized controlled study show the efficacy of mechanical focal vibration, as stimulation of the proprioceptive system, in PD and encourage further investigation. The effect of the device on more severe patients may open a new possibility to identify the most appropriate candidate for the management of gait disturbances and postural instability with FV delivered with Equistasi®.

18.
Int Orthod ; 16(1): 158-173, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29452908

RESUMO

AIM: The purpose of this study was to evaluate the effects of the rapid palatal expansion (RPE) on posture and gait analysis in subjects with maxillary transverse discrepancies. MATERIAL AND METHODS: Forty-one patients between 6 and 12 years were divided into 3 groups: 10 control subjects (Cs), 16 patients with unilateral posterior crossbite (CbMono), 15 patients with maxillary transverse discrepancy and no crossbite (Nocb). Every subject underwent gait analysis and posturographic examination in order to evaluate the presence of balance alterations before (T0) and after (T4) RPE application. The examinations were performed through a six-cameras stereophotogrammetric system (60-120Hz, BTS S.p.A.) synchronized with two force plates (FP4060, Bertec Corp.). Romberg test was performed on a force plate, and the statokinesiogram and joint kinematics were evaluated. One-way Anova was performed among the variables after evidence of normal distribution (Levene's test for equality of variances) and Kruskal-Wallis test (P<0.05), in order to compare the three groups of subjects. While paired t-test was performed, or Kruskal-Wallis test, instead when comparing pre- and post-RPE application within the same group of subjects (P<0.05). Tamane T2 or Bonferroni correction was applied where needed. RESULTS: The posturographic analysis reveal significant differences across the 3 population: 95% power frequency in medio-lateral and antero-posterior direction in T0, median frequency in medio-lateral direction in T0, mean power frequency in medio-lateral direction in T0. Significant differences were also registered in the three-dimensional joints kinematics variables, mainly between Cs and Cbmono in T0 and T4 and between Cbmono and Nocb in T4. CONCLUSIONS: A detectable correlation between dental occlusion and body posture is shown in this study that confirms another benefit of the RPE. This was mainly revealed in the dynamic posture where modifications at the mandibular level affect the whole body.


Assuntos
Análise da Marcha , Má Oclusão/terapia , Técnica de Expansão Palatina , Postura , Fenômenos Biomecânicos , Criança , Feminino , Humanos , Masculino , Má Oclusão/fisiopatologia , Fotogrametria , Estudos de Tempo e Movimento
20.
Gait Posture ; 60: 279-285, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28965863

RESUMO

Diabetic foot is one of the most debilitating complications of diabetes and may lead to plantar ulcers. In the last decade, gait analysis, musculoskeletal modelling (MSM) and finite element modelling (FEM) have shown their ability to contribute to diabetic foot prevention and suggested that the origin of the plantar ulcers is in deeper tissue layers rather than on the plantar surface. Hence the aim of the current work is to develop a methodology that improves FEM-derived foot internal stresses prediction, for diabetic foot prevention applications. A 3D foot FEM was combined with MSM derived force to predict the sites of excessive internal stresses on the foot. In vivo gait analysis data, and an MRI scan of a foot from a healthy subject were acquired and used to develop a six degrees of freedom (6 DOF) foot MSM and a 3D subject-specific foot FEM. Ankle kinematics were applied as boundary conditions to the FEM together with: 1. only Ground Reaction Forces (GRFs); 2. OpenSim derived extrinsic muscles forces estimated with a standard OpenSim MSM; 3. extrinsic muscle forces derived through the (6 DOF) foot MSM; 4. intrinsic and extrinsic muscles forces derived through the 6 DOF foot MSM. For model validation purposes, simulated peak pressures were extracted and compared with those measured experimentally. The importance of foot muscles in controlling plantar pressure distribution and internal stresses is confirmed by the improved accuracy in the estimation of the peak pressures obtained with the inclusion of intrinsic and extrinsic muscle forces.


Assuntos
Pé Diabético/prevenção & controle , Marcha/fisiologia , Imageamento Tridimensional , Músculo Esquelético/fisiopatologia , Modelagem Computacional Específica para o Paciente , Estresse Mecânico , Fenômenos Biomecânicos , Pé Diabético/fisiopatologia , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...