Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dent Mater J ; 43(3): 420-429, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38644213

RESUMO

This study investigated the wettability and consistency of various endodontic sealers, both inorganic and organic, and evaluated their sealing ability of root canals using the single-cone obturation technique, with and without ethylenediaminetetraacetic acid (EDTA) treatment. Bovine root canals were endodontically prepared and filled in preparation for the dye penetration test with toluidine blue solution. All sealers exhibited contact angles similar to or lower than dentin and displayed superior consistency. Among the sealers, organic sealers used without EDTA treatment showed reduced dye penetration compared to inorganic sealers. However, some inorganic and organic sealers showed dye penetration in the sealer and dentin of root canals subjected to EDTA treatment. In conclusion, the single-cone obturation technique, combined with these endodontic sealers, achieved close contact with root canal dentin due to their wettability and consistency. However, the sealing ability of certain sealers was influenced by EDTA treatment.


Assuntos
Ácido Edético , Teste de Materiais , Materiais Restauradores do Canal Radicular , Obturação do Canal Radicular , Molhabilidade , Materiais Restauradores do Canal Radicular/química , Animais , Bovinos , Obturação do Canal Radicular/métodos , Combinação de Medicamentos , Infiltração Dentária , Cavidade Pulpar , Silicatos/química , Propriedades de Superfície , Compostos de Cálcio/química , Resinas Epóxi/química , Colagem Dentária/métodos , Compostos de Alumínio/química , Técnicas In Vitro , Óxidos/química , Hidróxido de Cálcio/química , Preparo de Canal Radicular/métodos , Guta-Percha/química , Dentina/efeitos dos fármacos , Corantes
2.
Dent Mater J ; 42(2): 300-307, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36775336

RESUMO

The purpose of this study was to examine the relationship between the bond strength of stainless steel with two types of resin cements (MMA- and composite-based) on bovine enamel depending on the directionality of the applied force. The specimens were either placed in water or subjected to thermal cycles (TC), and the shear or tensile bond strengths (SBS or TBS) were determined. The SBS showed significantly greater than the TBS for both types of cement, and the SBS and TBS for composite-based cement had larger than MMA-based one. No significant difference in SBS was observed in the cements even after being subjected to TC. Cohesive failures of the cement and bovine enamel in the composite-based group, while adhesive failures were observed in MMA-based one. Consequently, the direction of the force at both cements affected the retention of stainless steel, and MMA-based cement was preferred when prioritizing less enamel damages.


Assuntos
Colagem Dentária , Braquetes Ortodônticos , Bovinos , Animais , Cimentos de Resina/química , Cimentos Dentários/química , Aço Inoxidável/química , Cimentos de Ionômeros de Vidro/química , Resistência ao Cisalhamento , Esmalte Dentário/química , Teste de Materiais
3.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674618

RESUMO

New bone-forming substitute materials are highly useful in dental implantology. The purpose of this study was to prepare cross-linked hyaluronic acid (cHLA)/cross-linked alkaline gelatin (cAG)/nano-hydroxyapatite (nHAp)/bone morphogenic protein (BMP) constructs; and evaluate their bone-forming capabilities in rat cranial bone defects. The cHLA and cAG liquids processed with an epoxy cross-linker were blended with a 3:1 volume ratio, followed by freeze-drying. The dry composites were further infiltrated with water containing nHAp only (BMP (−)) or with water containing nHAp and BMP (BMP (+)). Prepared wet constructs (BMP (−) and BMP (+)) were implanted in rat cranial bone defects, while defects only were also made, and animals were fed for 8 weeks, followed by subsequent soft X-ray measurements and histological observations. The X-ray results showed that BMP (+) constructs disappeared, though caused inward extension of peripherical bone from defect edges with an increase in length of approximately 24%, larger than those of BMP (−) constructs and defect only with approximately 17% and 8% increments, respectively (p < 0.05). Histological observations of BMP (+) construct samples clearly indicated active bone extension consisting of an array of island-like bones. It was concluded that cHLA/cAG/nHAp/BMP could be used as novel bone-substitute materials.


Assuntos
Substitutos Ósseos , Osteogênese , Ratos , Animais , Durapatita , Gelatina , Ácido Hialurônico , Alicerces Teciduais , Proteínas Morfogenéticas Ósseas , Crânio , Proteína Morfogenética Óssea 2 , Regeneração Óssea
4.
Polymers (Basel) ; 14(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559734

RESUMO

New injection-type bone-forming materials are desired in dental implantology. In this study, we added nano-hydroxyapatite (nHAp) and bone morphogenetic protein (BMP) to cross-linkable thiol-modified hyaluronic acid (tHyA) and evaluated its usefulness as an osteoinductive injectable material using an animal model. The sol (ux-tHyA) was changed to a gel (x-tHyA) by mixing with a cross-linker. We prepared two sol−gel (SG) material series, that is, x-tHyA + BMP with and without nHAp (SG I) and x-tHyA + nHAp with and without BMP (SG II). SG I materials in the sol stage were injected into the cranial subcutaneous connective tissues of mice, followed by in vivo gelation, while SG II materials gelled in Teflon rings were surgically placed directly on the cranial bones of rats. The animals were sacrificed 8 weeks after implantation, followed by X-ray analysis and histological examination. The results revealed that bone formation occurred at a high rate (>70%), mainly as ectopic bone in the SG I tests in mouse cranial connective tissues, and largely as bone augmentation in rat cranial bones in the SG II experiments when x-tHyA contained both nHAp and BMP. The prepared x-tHyA + nHAp + BMP SG material can be used as an injection-type osteoinductive bone-forming material. Sub-periosteum injection was expected.

5.
Materials (Basel) ; 15(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36556608

RESUMO

Bone-substitute materials are essential in dental implantology. We prepared collagen (Col)/hydroxyapatite (Hap)/acidic gelatin (AG)/basic fibroblast growth factor (b-FGF) constructs with enhanced bone-forming capability. The Col/Hap apatite composites were prepared by immersing Col sponges alternately in calcium and phosphate ion solutions five times, for 20 and 60 min, respectively. Then, the sponges were heated to 56 °C for 48 h. Scanning electron microscopy/energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction analyses showed that the Col/Hap composites contained poorly crystalline Hap precipitates on the Col matrix. Col/Hap composite granules were infiltrated by AG, freeze-dried, and immersed in b-FGF solution. The wet quaternary constructs were implanted in rat cranial bone defects for 8 weeks, followed by soft X-ray measurements and histological analysis. Animal studies have shown that the constructs moderately increase bone formation in cranial bone defects. We found that an alternate immersion time of 20 min led to the greatest bone formation (p < 0.05). Constructs placed inside defects slightly extend the preexisting bone from the defect edges and lead to the formation of small island-like bones inside the defect, followed by disappearance of the constructs. The combined use of Col, Hap, AG, and b-FGF might bring about novel bone-forming biomaterials.

6.
Materials (Basel) ; 15(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955169

RESUMO

Tooth enamel wear occurs because of daily mastication and occlusion. This study investigated the wear behavior of bovine teeth against aesthetic restorative materials in vitro. Abrader specimens were fabricated using four tooth-colored restorative materials (zirconia, lithium disilicate glass ceramic, dental porcelain, and resin composite), with bovine tooth enamel as a control. Flattened bovine tooth enamel was used as the substrate specimen. These materials were characterized by Vickers hardness tests and surface roughness measurements. Two-body wear tests between the abrader and substrate specimens were performed, and the worn topographies were evaluated using a contour-measuring instrument and 3D laser microscope. The restorative materials and bovine tooth enamel had similar surface roughness but different hardness and wear behaviors. Bovine teeth showed the largest wear in tooth-tooth contact as the abrader and substrate specimens. Compared to bovine teeth, zirconia, lithium disilicate glass ceramic, and dental porcelain showed greater hardness and less wear on their surfaces, and less substrate wear of the opposite tooth enamel. The lowest hardness resin composite showed intermediate wear on its surface, resulting in the lowest substrate wear. Accordingly, dentists should pay attention to the selection of restorative materials to reconstruct their morphologies owing to different wear behaviors.

7.
Materials (Basel) ; 15(9)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35591709

RESUMO

Osteo-conductive bone substitute materials are required in dentistry. In this study, highly pressed nano-hydroxyapatite/collagen (P-nHAP/COL) composites were formed by a hydraulic press. Critical-size bone defects (Φ = 6 mm) were made in the cranial bones of 10-week-old Wistar rats, in which P-nHAP/COL and pressed collagen (P-COL) specimens were implanted. Defect-only samples (DEF) were also prepared. After the rats had been nourished for 3 days, 4 weeks, or 8 weeks, ossification of the cranial defects of the rats was evaluated by micro-computed tomography (micro-CT) (n = 6 each). Animals were sacrificed at 8 weeks, followed by histological examination. On micro-CT, the opacity of the defect significantly increased with time after P-nHAP/COL implantation (between 3 days and 8 weeks, p < 0.05) due to active bone regeneration. In contrast, with P-COL and DEF, the opacity increased only slightly with time after implantation, indicating sluggish bone regeneration. Histological inspections of the defect zone implanted with P-nHAP/COL indicated the adherence of multinucleated giant cells (osteoclasts) to the implant with phagocytosis and fragmentation of P-nHAP/COL, whereas active bone formation occurred nearby. Fluorescent double staining indicated dynamic bone-formation activities. P-nHAP/COL is strongly osteo-conductive and could serve as a useful novel bone substitute material for future dental implant treatments.

8.
Materials (Basel) ; 15(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35161098

RESUMO

Collagenous biomaterials that are clinically applied in dentistry have dermis-type and membrane-type, both of which are materials for promoting bone and soft tissue formation. The properties of materials supplied with different types could affect their biodegradation periods. The purpose of this study was to characterize five of these products by four different methods: scanning electron microscopy (SEM) observation, thermogravimetry-differential thermal analysis (TG-DTA), 0.01 wt% collagenase dissolution test, and subcutaneous implantation test in vivo. SEM micrographs revealed that both dermis and membranous materials were fibrous and porous. The membranous materials had higher specific derivative thermal gravimetry (DTG) peak temperatures in TG-DTA at around 320 °C, longer collagenase dissolution time ranging from about 300 to 500 min, and more longevity in mice exceeding 9 weeks than the dermis materials. There existed a correlation between the peak temperature in TG-DTA and the collagenase dissolution time. It was considered that higher cross-link degree among collagen fibrils of the membrane-type collagenous materials might account for these phenomena. The experimental protocol and numerical results obtained could be helpful for selection and future development of fibrous collagenous biomaterials in clinical use.

9.
J Prosthodont Res ; 65(4): 521-527, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34657928

RESUMO

Purpose The aim of this study was to clarify the effects of different bonding systems (BSs) with various polymerization modes and root canal regions on the bond strength of core build-up resin composite to dentin.Methods Post cavities were prepared in the roots of 54 bovine teeth. Three types of BS with various polymerization modes (light, chemical, and dual-cure) were applied to the walls of the cavities, which were subsequently filled with core build-up resin composite, and stored in 37°C water for 7 days. Each tooth was then sectioned perpendicular to the long axis of the tooth into 9-disk from the coronal to the apical side. Bond strengths were measured on two-thirds of the disks, while dye penetration was examined in the remaining third.Results Statistical analysis revealed significant differences between the bond strengths of BSs with different polymerization modes, indicating chemical-cured BS had higher bond strength than light-cured BS. The chemical-cured BS group showed cohesive failure in both resin composite and dentin regardless of the root canal region, while adhesive failure was observed in the coronal region for dual-cured BS and in the apical region for light-cured BS. Dye penetration was significantly more at the bonding interface at the apical region of the light-cured BS.Conclusions Chemical-cured BS displayed a greater bond strength than light-cured BS. Cohesive failure was observed in both core build-up resin and dentin, indicating that the integration of tooth structure with resin composite was effective for retaining the resin core and sealing the root canal.


Assuntos
Colagem Dentária , Técnica para Retentor Intrarradicular , Animais , Bovinos , Cavidade Pulpar , Dentina , Adesivos Dentinários , Polimerização , Cimentos de Resina , Resistência à Tração
10.
Dent Mater ; 37(2): 284-295, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33358016

RESUMO

OBJECTIVE: The aim of this interlaboratory round robin test was to prove the robustness of the DIN EN ISO 6872:2019 and to identify the influence of processing and testing variations. METHODS: Each of the 12 laboratories participated (A-L) received 60 (n = 720) assigned zirconia specimens. All participants seperated the specimens from the blanks, sintered them, polished half of all specimens and performed the biaxial flexural test (DIN EN ISO 6872:2019). The surface roughness was determined by using tactile measuring device. Fractographic examination was performed under scanning-electron-microscopy (SEM). Data was analysed using Kolmogorov-Smirnov-, Kruskal-Wallis-, Mann-Whitney-U-test and two-parametric Weibull statistic (p < 0.05). RESULTS: The results for both preparation methods (as-fired and polished) showed significant differences for some participants. The values for as-fired groups ranged between 513 (I) and 659 (E) MPa. H showed higher Weibull modulus than C, E and I. Within polished groups flexural strengths values from 465 (L) to 1212 (E) MPa were observed, with a tendency to clustered groups A, I, J, L (465-689 MPa) and remaining groups (877-1212 MPa). E presented the highest and H the lowest Weibull modulus. Within A and J, no impact of the preparation method on flexural strength values was observed. Within L, as-fired specimens showed higher flexural strength than polished ones. The flexural strength increase did only associate to a certain extent with measured surface roughness. Fractography showed defect populations depending on polishing techniques, associated to the strength level, especially for polished groups. Reduced strength is related to machining defects, regardless of the surface state. SIGNIFICANCE: DIN EN ISO 6872:2019 can be seen as guidance to biaxial flexural strength testing but additional effort is necessary to ensure interlaboratory comparability. Calibrated furnaces and reliable sintering conditions are mandatory requirements together with detailed specifications on finishing or polishing procedures. Biaxial flexural testing is really a matter of understanding specimen preparation, alignment and mechanical testing by itself. DIN EN ISO 6872:2019 should further recommend reporting of mean surface roughness along with any biaxial flexural strength data. Fractography is a mandatory tool in interpretation and understanding of strength data.


Assuntos
Resistência à Flexão , Laboratórios , Cerâmica , Humanos , Teste de Materiais , Propriedades de Superfície , Zircônio
11.
Dent Mater J ; 39(5): 825-833, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32418951

RESUMO

This study evaluated bond strengths of three commercial veneering porcelains to experimental cast titanium-chromium (Ti-Cr) alloy and commercially pure titanium (cp-Ti) via three-point bending test. After the bending test, the fractured specimens were analyzed using an electron probe microanalyzer (EPMA). The Ti-Cr specimens showed lower bond strengths than the cp-Ti specimens, irrespective of the layering porcelain material; however, all the strengths exceeded the minimum requirement of ISO 9693-1:2012 (>25 MPa). EPMA revealed that titanium and/or chromium elements were detected on the debonded porcelain surface of the Ti-Cr and cp-Ti specimens in the case of the higher bond strength. Contrastingly, the residual porcelain was retained on the metallic surface in the case of the lower bond strength. Although porcelain bonding to the titanium alloy is influenced by porcelain type, the Ti-Cr alloy could be feasible for porcelain-fused-to-metal restorations.


Assuntos
Colagem Dentária , Porcelana Dentária , Ligas , Cromo , Teste de Materiais , Ligas Metalo-Cerâmicas , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Titânio
12.
Dent Mater ; 35(2): 270-282, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30522698

RESUMO

OBJECTIVE: The present study investigated the biaxial flexural strengths of bilayered ceria-stabilized zirconia/alumina nanocomposite (Ce-TZP/A) disks with various layering porcelains veneered using a slow-cooling protocol. METHODS: Five porcelain materials (VITA VM9, Cercon Ceram Kiss, and Vintage ZR with experimental coefficient of thermal expansions; CTEs of 8.45, 9.04, and 9.61ppm/°C) were veneered on Ce-TZP/A disks and slow-cooled after firing to fabricate bilayered specimens (core-to-porcelain thickness: 0.8mm/1.5mm). Biaxial flexural strengths of the specimens with the porcelain layer in tension were tested based on the piston-on-three-ball method (ISO 6872:2008). The data were statistically analyzed using Weibull distribution and Fisher's exact test. RESULTS: Tensile stresses were observed in the entire porcelain layer while compressive stress at the surface of the Ce-TZP/A layer shifted to tensile stress at the interface between the materials. The cases of small CTE mismatches between the materials showed high Weibull characteristic strengths at the internal and external surfaces of the specimens, except the VM9 group (CTE: 9.0-9.2ppm/°C). The maximum tensile stress was observed on the surface of the porcelain layer, where cracks originated and continuously propagated into the Ce-TZP layer. The Ce-TZP/A fractured into two pieces for large CTE mismatches between the materials, resulting in significantly lower flexural strengths than those fracturing into three pieces for small CTE mismatches. SIGNIFICANCE: Flexural strengths and fracture behaviors of bilayered porcelain-Ce-TZP/A disks were influenced by the CTE mismatches, and a small CTE mismatch between the materials was preferred when using a slow-cooling protocol.


Assuntos
Porcelana Dentária , Nanocompostos , Óxido de Alumínio , Análise do Estresse Dentário , Facetas Dentárias , Resistência à Flexão , Teste de Materiais , Zircônio
13.
Materials (Basel) ; 11(10)2018 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-30249000

RESUMO

Cobalt-chromium (Co-Cr) alloy is a widely used base material for dental fixed prostheses. These restorations can be produced through casting technique, subtractive or additive manufacturing technologies. However, limited information is available regarding the influence of manufacturing techniques on the properties of Co-Cr alloy since most studies used different chemical compositions of Co-Cr alloy for different manufacturing methods. This study compares the mechanical properties, metal-ceramic bond strength, and microstructures of specimens produced by casting, milling, and selective laser melting (SLM) from one single Co-Cr alloy composition. The mechanical properties of the alloy were investigated by tensile and Vickers hardness tests, and metal-ceramic bond strength was determined by three-point bending. Scanning electron microscopy (SEM) with backscattered electron (BSE) images and optical microphotographs were used to analyze the surface microstructures. Compared with the casting and milling techniques, SLM Co-Cr alloy specimens indicated enhanced mechanical properties and comparable metal-ceramic bond strength. Besides, the microstructures of the SLM specimens showed finer grains with more second phase particles than the casting and milling specimens. The results of our study indicate that SLM might be superior to traditional techniques for the manufacturing of fixed dental restorations.

14.
Dent Mater ; 34(8): 1199-1210, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29793794

RESUMO

OBJECTIVE: Herein we investigated the flexural strengths of bilayered ceria-stabilized zirconia/alumina nanocomposite (Ce-TZP/A) disks using different veneering porcelains. METHODS: Commercial (VITA VM9, Cercon Ceram Kiss, and IPS e.max Ceram) and experimental porcelains (Vintage ZR with coefficient of thermal expansions: CTEs of 8.45, 9.04, and 9.61ppm/°C) with various layer thicknesses (1.0, 1.5, and 2.0mm) were applied to Ce-TZP/A disks (0.8mm thickness, n=180). Biaxial flexural tests of the specimens with the porcelain layer in tension were evaluated based on the piston-on-three-ball method (ISO 6872: 2008). The calculated strengths were statistically analyzed using the two-parameter Weibull distribution with the maximum likelihood estimation. RESULTS: Although no significant differences were observed among the experimental porcelains, most specimens with the thinner layer of commercial porcelain showed higher Weibull characteristic strengths at the external surfaces than those with the thicker layer. Irrespective of the porcelain material, the thinner porcelain layer showed significantly higher strengths at the interface between the layers. Fracture origins were always observed at the bottom surface and continuously propagated into Ce-TZP/A substrates. The maximum tensile stress was located at the interface in specimens with the 1.0mm porcelain layer, except for IPS e.max Ceram. Porcelain delamination was dominant in the case of the higher CTE value and thicker layer thickness of the porcelain. SIGNIFICANCE: The calculated biaxial flexural strengths and the stress distributions for bilayered Ce-TZP/A disks were dependent on the porcelain materials. Optimum behavior was observed for a combination of a small CTE mismatch between the materials and a low core-to-porcelain thickness ratio.


Assuntos
Óxido de Alumínio/química , Cério/química , Facetas Dentárias , Nanocompostos/química , Zircônio/química , Cerâmica , Materiais Dentários/química , Porcelana Dentária , Análise do Estresse Dentário , Resistência à Flexão , Teste de Materiais
15.
Dent Mater ; 34(3): 486-493, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301652

RESUMO

OBJECTIVES: To assess the influence of a surface conditioner applied to pre-sintered yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) on the biaxial flexural strength and phase transformation. METHODS: Conditioner-coated specimens (12mm diameter×0.8mm thickness) were prepared by application of a slurry conditioner using a brush on pre-sintered Y-TZP discs, followed by sandblasting with 50-µm Al2O3 after sintering (C-SB) or no further treatment (C-NT). The remaining conditioner-free specimens were subjected to sandblasting before sintering (NC-SB) or were maintained without treatment (NC-NT). Surface roughness measurements and scanning electron microscopy (SEM) in conjunction with energy dispersive X-ray spectroscopy (SEM-EDX) were performed for surface characterizations. The phase transformation of Y-TZP was identified by X-ray diffraction (XRD), and the biaxial flexural strength was measured using the piston-on-three-ball test according to ISO 6872:2015. The data were analyzed using nonparametric Kruskal-Wallis tests and Weibull distributions with the maximum likelihood estimation. RESULTS: Sandblasting resulted in significantly rougher surfaces, irrespective of conditioner application. Conditioner layers were observed on surfaces in the C-NT and C-SB specimens. Monoclinic contents were present in a very small amount in the C-SB specimens. Both median biaxial flexural and characteristic strengths of all specimens exceeded ISO 6872:2015 requirements (Class 5: >800MPa), except the NC-SB specimens which showed significantly the lowest strength (p<0.001). Although no statistical difference was observed in Weibull modulus among the specimens (p=0.598), the NC-SB specimens showed the highest. SIGNIFICANCE: Surface conditioner application does not affect the biaxial flexural strength and phase stability of Y-TZP and can be considered practical for clinical use.


Assuntos
Materiais Dentários/química , Ítrio/química , Zircônio/química , Materiais Revestidos Biocompatíveis/química , Resistência à Flexão , Teste de Materiais , Microscopia Eletrônica de Varredura , Transição de Fase , Espectrometria por Raios X , Propriedades de Superfície , Difração de Raios X
16.
Materials (Basel) ; 10(2)2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28772554

RESUMO

Experimental cast titanium alloys containing 20 mass% chromium (Ti-20Cr) show preferable mechanical properties and a good corrosion resistance. This study evaluated the fretting corrosion behavior of Ti-20Cr. Ti-20Cr (n = 4) and commercially pure titanium (CP-Ti, n = 6) disk specimens were used. The fretting corrosion test was performed by electrochemical corrosion at 0.3 V in 0.9% saline solution and mechanical damage using 10 scratching cycles with three different scratching speeds (10-40 mm/s) at 10 N. After testing, the activation peak, repassivation time and surface morphology of each specimen were analyzed. The differences between the results were tested by parametric tests (α = 0.05). The average activation peaks were significantly higher in CP-Ti than in Ti-20Cr (p < 0.01), except at 20 mm/s. In the series of scratching speeds, faster scratching speeds showed higher activation peaks. The maximum activation peaks were also higher in CP-Ti. Slight differences in the repassivation time were observed between the materials at every scratching speed; faster scratching speeds showed shorter repassivation times in both materials (p < 0.05). CP-Ti showed severe damage and significantly higher wear depth than Ti-20Cr (p < 0.05). In conclusion, adding chromium to titanium reduced surface damage and improved the fretting corrosion resistance.

17.
Materials (Basel) ; 9(5)2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28773464

RESUMO

The aim of this study was to evaluate the fracture load and failure mode of all-ceramic crowns with different ceria-stabilized tetragonal zirconia/alumina nanocomposite (Ce-TZP/A) framework designs. Four frameworks (anatomical shape: AS, with a buccal or lingual supporting structure: BS and LS, or buccal and lingual supporting structures: BLS) were fabricated. All frameworks were veneered with porcelain to fabricate all-ceramic crowns followed by cementation to tooth analogs. The fracture load of each crown either without or with pre-loading (1.2 million cycles, 49 N) was measured. The failure mode was classified into partial or complete fracture. Differences were tested for significance (p < 0.05) by a two-way Analysis of Variance (ANOVA), followed by Tukey's test and by Fisher's exact test, respectively. Without pre-loading, supporting structures did not influence the fracture load or failure mode. Partial fractures were the most common failure mode. Pre-loading promoted the severity of the failure mode, although the fracture load among the framework designs was not influenced. In the AS group, prefailures were observed during pre-loading, and complete fractures were significantly increased after pre-loading. In contrast, the failure mode of the BLS group remained unchanged, showing only partial fracture even after pre-loading. This Ce-TZP/A framework design, comprised of an anatomical shape with additional buccal and lingual structures, has the potential to reduce the chipping of the veneering porcelain.

18.
Materials (Basel) ; 9(7)2016 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-28773641

RESUMO

This study analyzed the shear bond strength (SBS) of resin composite on zirconia surface to which a specific conditioner was applied before sintering. After sintering of either conditioner-coated or uncoated specimens, both groups were divided into three subgroups by their respective surface modifications (n = 10 per group): no further treatment; etched with hydrofluoric acid; and sandblasted with 50 µm Al2O3 particles. Surfaces were characterized by measuring different surface roughness parameters (e.g., Ra and Rmax) and water contact angles. Half of the specimens underwent thermocycling (10,000 cycles, 5-55 °C) after self-adhesive resin cement build-up. The SBSs were measured using a universal testing machine, and the failure modes were analyzed by microscopy. Data were analyzed by nonparametric and parametric tests followed by post-hoc comparisons (α = 0.05). Conditioner-coated specimens increased both surface roughness and hydrophilicity (p < 0.01). In the non-thermocycled condition, sandblasted surfaces showed higher SBSs than other modifications, irrespective of conditioner application (p < 0.05). Adhesive fractures were commonly observed in the specimens. Thermocycling favored debonding and decreased SBSs. However, conditioner-coated specimens upon sandblasting showed the highest SBS (p < 0.05) and mixed fractures were partially observed. The combination of conditioner application before sintering and sandblasting after sintering showed the highest shear bond strength and indicated improvements concerning the failure mode.

19.
Materials (Basel) ; 9(9)2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28773885

RESUMO

This study evaluated the bond strength of veneering porcelain with an experimental conditioner-coated zirconia. Pre-sintered Y-TZP specimens (n = 44) were divided in two groups based on conditioning type. After sintering, all sample surfaces were sandblasted and layered with veneering porcelain. Additionally, half of the specimens in each group underwent thermal cycling (10,000 cycles, 5-55 °C), and all shear bond strengths were measured. After testing, the failure mode of each fractured specimen was determined. Differences were tested by parametric and Fisher's exact tests (α = 0.05). The differences in bond strength were not statistically significant. Adhesive fractures were dominantly observed for the non-thermal cycled specimens. After thermal cycling, the conditioner-coated group showed cohesive and mixed fractures (p = 0.0021), whereas the uncoated group showed more adhesive fractures (p = 0.0021). Conditioning of the pre-sintered Y-TZP did not change the shear bond strength of the veneering porcelain, but did improve the failure mode after thermal cycling.

20.
Gerodontology ; 31(1): 68-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23581545

RESUMO

OBJECTIVES: Specific materials when used in the manufacture of dentures can enhance the elimination of micro-organisms to promote oral hygiene. We used Candida albicans adhesion assays, methylene blue (MB)-decomposition tests and mechanical property tests to evaluate the photocatalytic properties of acrylic resin containing fluoridated apatite-coated titanium dioxide (FAp-TiO2 ) after treatment with ultraviolet A (UVA) irradiation. BACKGROUND: Conventional denture cleaning methods are unable to completely eliminate micro-organisms from dentures. MATERIALS AND METHODS: Test specimens were prepared using acrylic resin containing three types of TiO2 powder [FAp-TiO2, titanium dioxide (TiO2 ) and hydroxyapatite-coated TiO2 (HAp-TiO2 )]; n = 96. In the adhesion assay, test specimens were incubated in a fungal suspension and subjected to UVA irradiation, and the number of attachments of C. albicans on the test specimens was counted. The MB-decomposition test and the three-point bending test were then performed to assess the photocatalytic effects of the FAp-TiO2 -containing acrylic resin. RESULTS: Fluoridated apatite-coated titanium dioxide-containing acrylic resin demonstrated superior effectiveness in inhibiting C. albicans adherence as well as in decomposing MB. In the three-point bending test, the resin showed a smaller decrease in flexural strength compared with TiO2 - or HAp-TiO2 -containing acrylic resin. Furthermore, UVA irradiation for 360 h did not significantly influence its flexural strength or elasticity modulus as compared with the control; this fulfils the requirements of International Organization for Standardization 1567:1999. CONCLUSION: Fluoridated apatite-coated titanium dioxide-containing acrylic resin is a clinically suitable material that promotes proper denture hygiene, particularly for elderly persons requiring nursing care or who have a decreased ability to perform normal activities of daily living.


Assuntos
Resinas Acrílicas/química , Materiais Revestidos Biocompatíveis/química , Materiais Dentários/química , Bases de Dentadura , Titânio/química , Apatitas/química , Apatitas/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Catálise , Bases de Dentadura/microbiologia , Durapatita/química , Módulo de Elasticidade , Humanos , Azul de Metileno/química , Oxidantes/química , Oxidantes/farmacologia , Fotólise , Maleabilidade , Estresse Mecânico , Propriedades de Superfície , Titânio/farmacologia , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...