Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10349, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710789

RESUMO

Mastitis is a multifactorial inflammatory disease. The increase in antibiotic resistance of bacteria that cause mastitis means that cattle breeders would prefer to reduce the use of antibiotics. Recently, therapies using mesenchymal stem cells (MSCs) from various sources have gained significant interest in the development of regenerative medicine in humans and animals, due to their extraordinary range of properties and functions. The aim of this study was to analyze the effectiveness of an allogeneic stem cells derived from bone marrow (BMSC) and adipose tissue (ADSC) in treating mastitis in dairy cattle. The research material consisted of milk and blood samples collected from 39 Polish Holstein-Friesian cows, 36 of which were classified as having mastitis, based on cytological evaluation of their milk. The experimental group was divided into subgroups according to the method of MSC administration: intravenous, intramammary, and intravenous + intramammary, and according to the allogeneic stem cells administered: BMSC and ADSC. The research material was collected at several time intervals: before the administration of stem cells, after 24 and 72 h, and after 7 days. Blood samples were collected to assess hematological parameters and the level of pro-inflammatory cytokines, while the milk samples were used for microbiological assessment and to determine the somatic cells count (SCC). The administration of allogeneic MSCs resulted in a reduction in the total number of bacterial cells, Staphylococcus aureus, bacteria from the Enterobacteriaceae group, and a systematic decrease in SCC in milk. The therapeutic effect was achieved via intravenous + intramammary or intramammary administration.


Assuntos
Mastite Bovina , Transplante de Células-Tronco Mesenquimais , Leite , Animais , Bovinos , Feminino , Mastite Bovina/terapia , Mastite Bovina/microbiologia , Leite/citologia , Leite/microbiologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/citologia , Citocinas/metabolismo , Citocinas/sangue
2.
Sci Rep ; 13(1): 21539, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057392

RESUMO

The aim of this study was to identify the c.495C > T polymorphism within exon 1 of the osteopontin gene (OPN), and to analyze its association with susceptibility to ketosis in Polish Holstein-Friesian (HF) cows. The study utilized blood samples from 977 HF cows, for the determination of ß-hydroxybutyric acid (BHB) and for DNA isolation. The c.495C > T polymorphism of the bovine osteopontin gene was determined by PCR-RFLP. The CT genotype (0.50) was deemed the most common, while TT (0.08) was the rarest genotype. Cows with ketosis most often had the CC genotype, while cows with the TT genotype had the lowest incidence of ketosis. To confirm the relationship between the genotype and ketosis in cows, a weight of evidence (WoE) was generated. A very strong effect of the TT genotype on resistance to ketosis was demonstrated. The distribution of the ROC curve shows that the probability of resistance to ketosis is > 75% if cows have the TT genotype of the OPN gene (cutoff value is 0.758). Results suggest that TT genotype at the c.495C > T locus of the OPN gene might be effective way to detect the cows with risk of ketosis.


Assuntos
Doenças dos Bovinos , Cetose , Feminino , Bovinos , Animais , Leite , Osteopontina/genética , Cetose/genética , Cetose/veterinária , Polimorfismo Genético , Ácido 3-Hidroxibutírico , Doenças dos Bovinos/diagnóstico , Lactação
3.
Animals (Basel) ; 13(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37444025

RESUMO

Nanopore sequencing is a third-generation biopolymer sequencing technique that relies on monitoring the changes in an electrical current that occur as nucleic acids are passed through a protein nanopore. Increasing quality of reads generated by nanopore sequencing systems encourages their application in genome-wide polymorphism detection and genotyping. In this study, we employed nanopore sequencing to identify genome-wide polymorphisms in the horse genome. To reduce the size and complexity of genome fragments for sequencing in a simple and cost-efficient manner, we amplified random DNA fragments using a modified DOP-PCR and sequenced the resulting products using the MinION system. After initial filtering, this generated 28,426 polymorphisms, which were validated at a 3% error rate. Upon further filtering for polymorphism and reproducibility, we identified 9495 SNPs that reflected the horse population structure. To conclude, the use of nanopore sequencing, in conjunction with a genome enrichment step, is a promising tool that can be practical in a variety of applications, including genotyping, population genomics, association studies, linkage mapping, and potentially genomic selection.

4.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361948

RESUMO

Epigenetic mechanisms of gene regulation are important for the proper differentiation of cells used for therapeutic and regenerative purposes. The primary goal of the present study was to investigate the impacts of 5-aza-2' deoxycytidine (5-AZA-dc)- and/or trichostatin A (TSA)-mediated approaches applied to epigenomically modulate the ex vivo expanded equine chondrocytes maintained in monolayer culture on the status of chondrogenic cytodifferentiation at the transcriptome level. The results of next-generation sequencing of 3' mRNA-seq libraries on stimulated and unstimulated chondrocytes of the third passage showed no significant influence of 5-AZA-dc treatment. Chondrocytes stimulated with TSA or with a combination of 5-AZA-dc+TSA revealed significant expressional decline, mainly for genes encoding histone and DNA methyltransferases, but also for other genes, many of which are enriched in canonical pathways that are important for chondrocyte biology. The TSA- or 5-AZA-dc+TSA-induced upregulation of expanded chondrocytes included genes that are involved in histone hyperacetylation and also genes relevant to rheumatoid arthritis and inflammation. Chondrocyte stimulation experiments including a TSA modifier also led to the unexpected expression incrementation of genes encoding HDAC3, SIRT2, and SIRT5 histone deacetylases and the MBD1 CpG-binding domain protein, pointing to another function of the TSA agent besides its epigenetic-like properties. Based on the transcriptomic data, TSA stimulation seems to be undesirable for chondrogenic differentiation of passaged cartilaginous cells in a monolayer culture. Nonetheless, obtained transcriptomic results of TSA-dependent epigenomic modification of the ex vivo expanded equine chondrocytes provide a new source of data important for the potential application of epigenetically altered cells for transplantation purposes in tissue engineering of the equine skeletal system.


Assuntos
Condrócitos , Transcriptoma , Animais , Azacitidina/farmacologia , Condrócitos/metabolismo , Decitabina/farmacologia , Metilação de DNA , Epigênese Genética , Epigenômica , Inibidores de Histona Desacetilases , Histonas/metabolismo , Cavalos/genética , Ácidos Hidroxâmicos/farmacologia
5.
Animals (Basel) ; 12(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892532

RESUMO

The effect of the g.4290 C>G substitution in the FADS2 gene and g.285 C>T in the FABP4 gene on carcass quality, meat quality, and fatty acid profile of the pectoralis superficialis muscle of 238 male broiler chickens reared up to 45 days of age was analyzed. A significant influence of g.4290 C>G in the FADS2 gene on the pectoralis superficialis muscle fatty acid profile was demonstrated. Chickens with the GG genotype were characterized by the highest content of conjugated linoleic acid, amino acids, eicosapentaenoic acids, docosapentaenoic acid, docosahexaenoic acids. and the lowest value of the linoleic acid/alpha-linolenic acid ratio. The FABP4 polymorphism determined only the content of C18:1n-9, C18:2n-6 and docosahexaenoic acid. There was no effect of the studied genotypes on final body weight, carcass quality traits, or quality of broiler pectoral muscles.

6.
Theriogenology ; 188: 116-124, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689941

RESUMO

The in vitro maturation (IVM) of equine oocytes is still not efficient and does not yield consistent results. The specific requirements of equine oocytes during this process are still largely unknown, which hinders the development of assisted reproductive techniques (ART) in this species. Because the ovarian follicle microenvironment supports oocytes in their acquisition of developmental competence, follicular fluid seems to be a substantial source of bioactive factors that could support the IVM process. Extracellular vesicles (EVs) are cell-secreted molecules in body fluids that are able to deliver molecular signals and transfer genetic information (mRNA, miRNA) between donor and recipient cells. Hence, our hypothesis is that follicular fluid EVs (ffEVs) from small (<20 mm) ovarian follicles can improve the in vitro maturation rate of mare oocytes. To test our hypothesis, equine ovarian follicular fluid was aspirated and ffEVs were isolated by ultracentrifugation, then characterized using nanoparticle tracking analysis and flow cytometry. Additionally, ffEVs were labeled using the ExoGlow-protein EV labeling kit (System Biosciences, Palo Alto, CA). Cumulus-oocyte complexes (COCs) were matured using a one-step method (Method I, continuous culture for 24-38 h) or a two-step method (Method II, initial denudation after 24 h), in the presence (200 µg protein/ml) or absence of ffEVs. The results show the internalization of ffEVs by equine cumulus cells and, for the first time, also by oocytes. The ffEV treatment during two-step culture had a positive effect on the maturation rate of compacted COCs compared to the control group (45.7% and 20.5%, respectively; p < 0.05). No effect of supplementation was observed on the maturation rate during one-step culture. Our results indicate that the supplementation of culture media with EVs isolated from the follicular fluid of small follicles can improve the IVM rate of mare oocytes, suggesting that ffEVs play an important role during this process and may enhance the development of equine ART.


Assuntos
Vesículas Extracelulares , Líquido Folicular , Animais , Células do Cúmulo , Feminino , Cavalos , Técnicas de Maturação in Vitro de Oócitos/métodos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos , Folículo Ovariano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA