Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 273: 93-102, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30419446

RESUMO

This work demonstrated a pioneer work in the pre-treatment of rice straw by phosphoric acid (H3PO4) for succinate production. The optimized pre-treatment condition of rice straw was at 121 °C for 30 min with 2 N H3PO4. With this condition, total sugar concentration of 31.2 g/L with the highest hemicellulose saccharification yield of 94% was obtained. The physicochemical analysis of the pre-treated rice straw showed significant changes in its structure thus enhancing enzymatic saccharification. Succinate concentrations of 78.5 and 63.8 g/L were produced from hydrolysate liquor (L) and solid fraction (S) of the pre-treated rice straw respectively, with a comparable yield of 86% by E. coli AS1600a. Use of a combined L + S fraction in simultaneous saccharification and fermentation (LS + SSF) further improved succinate production at a concentration and yield of 85.6 g/L and 90% respectively. The results suggested that H3PO4 pre-treated rice straw may be utilized for economical succinate production by E. coli AS1600a.


Assuntos
Escherichia coli/metabolismo , Oryza/metabolismo , Ácido Succínico/metabolismo , Ácidos , Fermentação , Hidrólise , Técnicas de Diluição do Indicador
2.
Bioresour Technol ; 260: 348-356, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29649727

RESUMO

Rice straw was pretreated with sodium hydroxide (NaOH) before subsequent use for succinate production by Escherichia coli KJ122 under simultaneous saccharification and fermentation (SSF). The NaOH pretreated rice straw was significantly enhanced lignin removal up to 95%. With the optimized enzyme loading of 4% cellulase complex + 0.5% xylanase (endo-glucanase 67 CMC-U/g, ß-glucosidase 26 pNG-U/g and xylanase 18 CMC-U/g dry biomass), total sugar conversion reached 91.7 ±â€¯0.8% (w/w). The physicochemical analysis of NaOH pretreated rice straw indicated dramatical changes in its structure, thereby favoring enzymatic saccharification. In batch SSF, succinate production of 69.8 ±â€¯0.3 g/L with yield and productivity of 0.84 g/g pretreated rice straw and 0.76 ±â€¯0.02 g/L/h, respectively, was obtained. Fed-batch SSF significantly improved succinate concentration and productivity to 103.1 ±â€¯0.4 g/L and 1.37 ±â€¯0.07 g/L/h with a comparable yield. The results demonstrated a feasibility of sequential saccharification and fermentation of rice straw as a promising process for succinate production in industrial scale.


Assuntos
Fermentação , Hidróxido de Sódio , Ácido Succínico , Celulase , Escherichia coli , Etanol , Hidrólise , Oryza
3.
Bioresour Technol ; 193: 433-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26159300

RESUMO

Escherichia coli KJ122 was engineered to produce succinate from glucose using the wild type GalP for glucose uptake instead of the native phosphotransferase system (ptsI mutation). This strain now ferments 10% xylose poorly. Mutants were selected by serial transfers in AM1 mineral salts medium with 10% xylose. Clones from this population all exhibited a similar improvement, co-fermentation of an equal mixture of xylose and glucose. One of these, AS1600a, produced 84.26 ± 1.37 g/L succinate, equivalent to that produced by the parent (KJ122) from 10% glucose (85.46 ± 1.78 g/L). AS1600a was sequenced and found to contain a mutation in galactose permease (GalP, G236D). This mutation was shown to be responsible for the improvement in fermentation using KJΔgalP as the host and expression vectors with native galP and with mutant galP(∗). Strain AS1600a and KJΔgalP(pLOI5746; galP(∗)) also co-fermented a mixture of glucose, xylose, arabinose, and galactose in sugarcane bagasse hydrolysate using mineral salts medium.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Carboidratos/química , Escherichia coli/metabolismo , Fermentação , Engenharia Genética/métodos , Proteínas de Transporte de Monossacarídeos/genética , Mutação/genética , Proteínas Periplásmicas de Ligação/genética , Ácido Succínico/metabolismo , Celulose/metabolismo , Escherichia coli/genética , Genes Bacterianos , Glucose/metabolismo , Hidrólise , Lignina/metabolismo , Saccharum/química , Xilose/metabolismo
4.
Bioprocess Biosyst Eng ; 38(1): 175-87, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25030337

RESUMO

A metabolically engineered Escherichia coli KJ122 was efficiently utilized for succinate production from cassava pulp during batch separate hydrolysis and fermentation (SHF) under simple anaerobic conditions. Succinate concentration of 41.46 ± 0.05 g/L with yield and productivity of 82.33 ± 0.14 g/100 g dry pulp and 0.84 ± 0.02 g/L/h was obtained. In batch simultaneous saccharification and fermentation (SSF), hydrolysis of 12 % (w/v) cassava pulp with an enzyme loading of 2 % AMG + 3 % Cel (v/w) at pH 6.5 was optimized at 39 °C. Succinate concentration of 80.86 ± 0.49 g/L with a yield of 70.34 ± 0.37 g/100 g dry pulp and a productivity of 0.84 ± 0.01 g/L/h was attained using E. coli KJ122. Fed-batch SSF significantly enhanced succinate concentration to 98.63 ± 0.12 g/L at yield and productivity of 71.64 ± 0.97 g/100 g dry pulp and 1.03 ± 0.01 g/L/h. This result indicated an efficient and economical succinate production from cassava pulp using SHF and SSF by the use of E. coli KJ122.


Assuntos
Escherichia coli/metabolismo , Manihot/metabolismo , Ácido Succínico/metabolismo , Biomassa , Reatores Biológicos , Fermentação , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...