Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 153(7): 074306, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32828078

RESUMO

Rate constants for dissociative electron attachment to N2O yielding O- have been measured as a function of temperature from 400 K to 1000 K. Detailed modeling of kinetics was needed to derive the rate constants at temperatures of 700 K and higher. In the 400 K-600 K range, upper limits are given. The data from 700 K to 1000 K follow the Arrhenius equation behavior described by 2.4 × 10-8 e-0.288 eV/kT cm3 s-1. The activation energy derived from the Arrhenius plot is equal to the endothermicity of the reaction. However, calculations at the CCSD(T)/complete basis set level suggest that the lowest energy crossing between the neutral and anion surfaces lies 0.6 eV above the N2O equilibrium geometry and 0.3 eV above the endothermicity of the dissociative attachment. Kinetic modeling under this assumption is in modest agreement with the experimental data. The data are best explained by attachment occurring below the lowest energy crossing of the neutral and valence anion surfaces via vibrational Feshbach resonances.

2.
Phys Chem Chem Phys ; 22(16): 8913-8923, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32292975

RESUMO

The kinetics of MgO+ + CH4 was studied experimentally using the variable ion source, temperature adjustable selected ion flow tube (VISTA-SIFT) apparatus from 300-600 K and computationally by running and analyzing reactive atomistic simulations. Rate coefficients and product branching fractions were determined as a function of temperature. The reaction proceeded with a rate of k = 5.9 ± 1.5 × 10-10(T/300 K)-0.5±0.2 cm3 s-1. MgOH+ was the dominant product at all temperatures, but Mg+, the co-product of oxygen-atom transfer to form methanol, was observed with a product branching fraction of 0.08 ± 0.03(T/300 K)-0.8±0.7. Reactive molecular dynamics simulations using a reactive force field, as well as a neural network trained on thousands of structures yield rate coefficients about one order of magnitude lower. This underestimation of the rates is traced back to the multireference character of the transition state [MgOCH4]+. Statistical modeling of the temperature-dependent kinetics provides further insight into the reactive potential surface. The rate limiting step was found to be consistent with a four-centered activation of the C-H bond, in agreement with previous calculations. The product branching was modeled as a competition between dissociation of an insertion intermediate directly after the rate-limiting transition state, and traversing a transition state corresponding to a methyl migration leading to a Mg-CH3OH+ complex, though only if this transition state is stabilized significantly relative to the dissociated MgOH+ + CH3 product channel. An alternative, non-statistical mechanism is discussed, whereby a post-transition state bifurcation in the potential surface could allow the reaction to proceed directly from the four-centered TS to the Mg-CH3OH+ complex thereby allowing a more robust competition between the product channels.

3.
J Phys Chem A ; 123(29): 6123-6129, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31251615

RESUMO

Mass-selected aluminum anion clusters, Aln-, were reacted with O2. Rate constants (300 K) for 2 < n < 30 and product branching fractions for 2 < n < 17 are reported. Reactivity is strongly anticorrelated to Aln- electron binding energy (EBE). Al13- reacts more slowly than predicted by EBE but notably is not inert, reacting at a measurable 0.05% efficiency (2.5 ± 1.5 × 10-13 cm3 s-1). Al6- is also an outlier, reacting more slowly than expected after accounting for other factors, suggesting that high symmetry increases stability. Implications of observed Al13- reactivity, contributions of both electronic shell-closing and geometric homogeneity to Aln- resistance to O2 etching, and future directions to more fully unravel the reaction mechanisms are discussed.

4.
J Chem Phys ; 151(24): 244301, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893916

RESUMO

Rate constants for the reactions of C+ + Cl-, Br-, and I- were measured at 300 K using the variable electron and neutral density electron attachment mass spectrometry technique in a flowing afterglow Langmuir probe apparatus. Upper bounds of <10-8 cm3 s-1 were found for the reaction of C+ with Br- and I-, and a rate constant of 4.2 ± 1.1 × 10-9 cm3 s-1 was measured for the reaction with Cl-. The C+ + Cl- mutual neutralization reaction was studied theoretically from first principles, and a rate constant of 3.9 × 10-10 cm3 s-1, an order of magnitude smaller than experiment, was obtained with spin-orbit interactions included using a semiempirical model. The discrepancy between the measured and calculated rate constants could be explained by the fact that in the experiment, the total loss of C+ ions was measured, while the theoretical treatment did not include the associative ionization channel. The charge transfer was found to take place at small internuclear distances, and the spin-orbit interaction was found to have a minor effect on the rate constant.

5.
J Chem Phys ; 149(4): 044303, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30068160

RESUMO

Mutual neutralization (MN) rate constants kMN for the reactions of H+ and D+ with the atomic halide anions Cl-, Br-, and I- were measured using the variable electron and neutral density attachment mass spectrometry technique in a flowing afterglow Langmuir probe apparatus. At 300 K, the rate constants for each reaction studied are on the order of 10-8 cm3 s-1. A trend for the rate constants of the systems in this work, kMNCl-

6.
Phys Chem Chem Phys ; 19(13): 8768-8777, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28275770

RESUMO

The kinetics of 4Fe+(CO)n=0-2 + O2 are measured under thermal conditions from 300-600 K using a selected-ion flow tube apparatus. Both the bare metal and n = 2 cations are inert to reaction over this temperature range, but 4Fe+(CO) reacts rapidly (k = 3.2 ± 0.8 × 10-10 cm3 s-1 at 300 K, 52% of the collisional rate coefficient) to form FeO+ + CO2. This is an example of the oxidation of CO by O2 occurring entirely on a single non-noble metal atom. The reaction of the bare metal reaction is known to be endothermic, such that this result is expected; however, the n = 2 reaction has highly exothermic product channels available, such that the lack of reaction is surprising in light of the n = 1 reactivity. Stationary points along all three reaction coordinates are calculated using the TPSSh hybrid functional. These surfaces show that the n = 1 reaction is an example of two-state reactivity; the reaction proceeds initially on the sextet surface over a submerged barrier to a structure with an O-O bond distance longer than that in O2, but must cross to the quartet surface in order to proceed over a second submerged barrier to rearrange to form CO2. The n = 2 reaction does not proceed because, on all spin surfaces, the transition state corresponding to O-O separation is at higher energy than the separated reactants. The difference between the n = 1 and n = 2 reactions is not a result of steric effects, but rather because the O2 is more strongly bound to Fe in the entrance well of the n = 1 case, and that energy is available to overcome the rate-limiting barrier to O-O cleavage. Experimental verification of some of these details are provided by guided ion beam tandem mass spectrometry results. The kinetic energy dependence of the n = 1 reaction shows evidence for a curve crossing and yields relevant thermochemistry for competing reaction channels.

7.
J Chem Phys ; 144(23): 234303, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27334158

RESUMO

The kinetics of the FeCO(+) + N2O reaction have been studied at thermal energies (300-600 K) using a variable temperature selected ion flow tube apparatus. Rate constants and product branching fractions are reported. The reaction is modestly inefficient, proceeding with a rate constant of 6.2 × 10(-11) cm(3) s(-1) at 300 K, with a small negative temperature dependence, declining to 4.4 × 10(-11) cm(3) s(-1) at 600 K. Both Fe(+) and FeO(+) products are observed, with a constant branching ratio of approximately 40:60 at all temperatures. Calculation of the stationary points along the reaction coordinate shows that only the ground state quartet surface is initially sampled resulting in N2 elimination; a submerged barrier along this portion of the surface dictates the magnitude and temperature dependence of the total rate constant. The product branching fractions are determined by the behavior of the remaining (4)OFeCO(+) fragment, and this behavior is compared to that found in the reaction of FeO(+) + CO, which initially forms (6)OFeCO(+). Thermodynamic and kinetic arguments are used to show that the spin-forbidden surface crossing in this region is efficient, proceeding with an average rate constant of greater than 10(12) s(-1).

8.
Opt Lett ; 41(7): 1570-3, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192289

RESUMO

A laser-ignition (LI) method is presented that utilizes a high-repetition-rate (HRR) nanosecond laser to reduce minimal ignition energies of individual pulses by ∼10 times while maintaining comparable total energies. The most common LI employs a single nanosecond-laser pulse with energies on the order of tens of millijoules to ignite combustible gaseous mixtures. Because of the requirements of high energy per pulse, fiber coupling of traditional LI systems is difficult to implement in real-world systems with limited optical access. The HRR LI method demonstrated here has an order of magnitude lower per-pulse energy requirement than the traditional single-pulse LI technique, potentially allowing delivery through standard commercial optical fibers. Additionally, the HRR LI approach significantly increases the ignition probability of lean combustible mixtures in high-speed flows while maintaining low individual pulse energies.

9.
Nanoscale Res Lett ; 10: 15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852313

RESUMO

Significant reduction of the breakdown threshold in a DC microdischarge via seeding metal nanoparticles has been demonstrated. Compared to standard Paschen curves in dry air, reductions in the breakdown voltage of 5% to 25% were obtained for PD values (the product of pressure and electrode gap distance) ranging from 20 to 40 Torr-cm by seeding aluminum and iron nanoparticles with mean sizes of 75 nm and 80 nm, respectively. No secondary energy source was required to achieve this breakdown threshold reduction. From high-speed chemiluminescence imaging of the discharge evolution, breakdown was shown to be initiated at reduced voltages. Following breakdown, the increase in temperature ignited some of the nanoparticles near the cathode. Results suggest that possible charging of the nanoparticles within the gap may reduce the effective transient distance, leading to the threshold reduction.

10.
J Phys Chem A ; 119(6): 952-8, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25585122

RESUMO

A novel technique is described for the measurement of rate constants and product branching fractions of thermal reactions between cation and radical species. The technique is a variant of the variable electron and neutral density attachment mass spectrometry (VENDAMS) method, employing a flowing afterglow-Langmuir probe apparatus. A radical species is produced in situ via dissociative electron attachment to a neutral precursor; this allows for a quantitative derivation of the radical concentration and, as a result, a quantitative determination of rate constants. The technique is applied to the reactions of Ar(+) and O2(+) with CH3 at 300 K. The Ar(+) + CH3 reaction proceeds near the collisional rate constant of 1.1 × 10(-9) cm(3) s(-1) and has three product channels: → CH3(+) + Ar (k = 5 ± 2 × 10(-10) cm(3) s(-1)), → CH2(+) + H + Ar (k = 7 ± 2 × 10(-10) cm(3) s(-1)), → CH(+) + H2 + Ar (k = 5 ± 3 × 10(-11) cm(3) s(-1)). The O2(+) + CH3 reaction is also efficient, with direct charge transfer yielding CH3(+) as the primary product channel. Several results needed to support these measurements are reported, including the kinetics of Ar(+) and O2(+) with CH3I, electron attachment to CH3I, and mutual neutralization of CH3(+) and CH2(+) with I(-).

11.
Appl Opt ; 51(28): 6864-9, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23033104

RESUMO

Here we report nonintrusive local rotational temperature measurements of molecular oxygen, based on coherent microwave scattering (radar) from resonance-enhanced multiphoton ionization (REMPI) in room air and hydrogen/air flames. Analyses of the rotational line strengths of the two-photon molecular oxygen C(3)Π(v=2)←X(3)Σ(v'=0) transition have been used to determine the hyperfine rotational state distribution of the ground X(3)Σ(v'=0) state. Rotationally resolved 2+1 REMPI spectra of the molecular oxygen C(3)Π(v=2)←X(3)Σ(v'=0) transition at different temperatures were obtained experimentally by radar REMPI. Rotational temperatures have been determined from the resulting Boltzmann plots. The measurements in general had an accuracy of ~±60 K in the hydrogen/air flames at various equivalence ratios. Discussions about the decreased accuracy for the temperature measurement at elevated temperatures have been presented.


Assuntos
Incêndios , Micro-Ondas , Oxigênio/análise , Análise Espectral/métodos , Termometria/instrumentação , Algoritmos , Íons/análise , Fótons , Radar , Espalhamento de Radiação , Temperatura , Termodinâmica , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...