Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2322203121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968122

RESUMO

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)-a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single-cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to current and future antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.


Assuntos
Análise de Célula Única , Masculino , Humanos , Análise de Célula Única/métodos , Animais , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Antígenos de Superfície/metabolismo , Antígenos de Superfície/genética , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico
3.
NPJ Precis Oncol ; 8(1): 104, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760413

RESUMO

Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity. However, PSMA expression is lost in a significant number of CRPC tumors. The identification of additional cell surface targets is necessary to develop new therapeutic approaches. Here, we performed a comprehensive analysis of the expression heterogeneity and co-expression patterns of trophoblast cell-surface antigen 2 (TROP2), delta-like ligand 3 (DLL3), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in CRPC samples from a rapid autopsy cohort. We show that DLL3 and CEACAM5 exhibit the highest expression in neuroendocrine prostate cancer (NEPC), while TROP2 is expressed across different CRPC molecular subtypes, except for NEPC. We further demonstrated that AR alterations were associated with higher expression of PSMA and TROP2. Conversely, PSMA and TROP2 expression was lower in RB1-altered tumors. In addition to genomic alterations, we show a tight correlation between epigenetic states, particularly histone H3 lysine 27 methylation (H3K27me3) at the transcriptional start site and gene body of TACSTD2 (encoding TROP2), DLL3, and CEACAM5, and their respective protein expression in CRPC patient-derived xenografts. Collectively, these findings provide insights into patterns and determinants of expression of TROP2, DLL3, and CEACAM5 with implications for the clinical development of cell surface targeting agents in CRPC.

4.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562884

RESUMO

There is optimism that cancer drug resistance can be addressed through appropriate combination therapy, but success requires understanding the growing complexity of resistance mechanisms, including the evolution and population dynamics of drug-sensitive and drug-resistant clones over time. Using DNA barcoding to trace individual prostate tumor cells in vivo , we find that the evolutionary path to acquired resistance to androgen receptor signaling inhibition (ARSI) is dependent on the timing of treatment. In established tumors, resistance occurs through polyclonal adaptation of drug-sensitive clones, despite the presence of rare subclones with known, pre-existing ARSI resistance. Conversely, in an experimental setting designed to mimic minimal residual disease, resistance occurs through outgrowth of pre-existing resistant clones and not by adaptation. Despite these different evolutionary paths, the underlying mechanisms responsible for resistance are shared across the two evolutionary paths. Furthermore, mixing experiments reveal that the evolutionary path to adaptive resistance requires cooperativity between subclones. Thus, despite the presence of pre-existing ARSI-resistant subclones, acquired resistance in established tumors occurs primarily through cooperative, polyclonal adaptation of drug-sensitive cells. This tumor ecosystem model of resistance has new implications for developing effective combination therapy.

5.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38585869

RESUMO

To gain insight into how ERG translocations cause prostate cancer, we performed single cell transcriptional profiling of an autochthonous mouse model at an early stage of disease initiation. Despite broad expression of ERG in all prostate epithelial cells, proliferation was enriched in a small, stem-like population with mixed-luminal basal identity (called intermediate cells). Through a series of lineage tracing and primary prostate tissue transplantation experiments, we find that tumor initiating activity resides in a subpopulation of basal cells that co-express the luminal genes Tmprss2 and Nkx3.1 (called BasalLum) but not in the larger population of classical Krt8+ luminal cells. Upon ERG activation, BasalLum cells give rise to the highly proliferative intermediate state, which subsequently transitions to the larger population of Krt8+ luminal cells characteristic of ERG-positive human cancers. Furthermore, this proliferative population is characterized by an ERG-specific chromatin state enriched for NFkB, AP-1, STAT and NFAT binding, with implications for TF cooperativity. The fact that the proliferative potential of ERG is enriched in a small stem-like population implicates the chromatin context of these cells as a critical variable for unmasking its oncogenic activity.

6.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645034

RESUMO

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)--a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis (TMA) on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated, but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer (SCLC) subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to novel antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.

7.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38645223

RESUMO

Lineage plasticity is a recognized hallmark of cancer progression that can shape therapy outcomes. The underlying cellular and molecular mechanisms mediating lineage plasticity remain poorly understood. Here, we describe a versatile in vivo platform to identify and interrogate the molecular determinants of neuroendocrine lineage transformation at different stages of prostate cancer progression. Adenocarcinomas reliably develop following orthotopic transplantation of primary mouse prostate organoids acutely engineered with human-relevant driver alterations (e.g., Rb1-/-; Trp53-/-; cMyc+ or Pten-/-; Trp53-/-; cMyc+), but only those with Rb1 deletion progress to ASCL1+ neuroendocrine prostate cancer (NEPC), a highly aggressive, androgen receptor signaling inhibitor (ARSI)-resistant tumor. Importantly, we show this lineage transition requires a native in vivo microenvironment not replicated by conventional organoid culture. By integrating multiplexed immunofluorescence, spatial transcriptomics and PrismSpot to identify cell type-specific spatial gene modules, we reveal that ASCL1+ cells arise from KRT8+ luminal epithelial cells that progressively acquire transcriptional heterogeneity, producing large ASCL1+;KRT8- NEPC clusters. Ascl1 loss in established NEPC results in transient tumor regression followed by recurrence; however, Ascl1 deletion prior to transplantation completely abrogates lineage plasticity, yielding adenocarcinomas with elevated AR expression and marked sensitivity to castration. The dynamic feature of this model reveals the importance of timing of therapies focused on lineage plasticity and offers a platform for identification of additional lineage plasticity drivers.

8.
Mol Oncol ; 18(2): 245-279, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135904

RESUMO

Analyses of inequalities related to prevention and cancer therapeutics/care show disparities between countries with different economic standing, and within countries with high Gross Domestic Product. The development of basic technological and biological research provides clinical and prevention opportunities that make their implementation into healthcare systems more complex, mainly due to the growth of Personalized/Precision Cancer Medicine (PCM). Initiatives like the USA-Cancer Moonshot and the EU-Mission on Cancer and Europe's Beating Cancer Plan are initiated to boost cancer prevention and therapeutics/care innovation and to mitigate present inequalities. The conference organized by the Pontifical Academy of Sciences in collaboration with the European Academy of Cancer Sciences discussed the inequality problem, dependent on the economic status of a country, the increasing demands for infrastructure supportive of innovative research and its implementation in healthcare and prevention programs. Establishing translational research defined as a coherent cancer research continuum is still a challenge. Research has to cover the entire continuum from basic to outcomes research for clinical and prevention modalities. Comprehensive Cancer Centres (CCCs) are of critical importance for integrating research innovations to preclinical and clinical research, as for ensuring state-of-the-art patient care within healthcare systems. International collaborative networks between CCCs are necessary to reach the critical mass of infrastructures and patients for PCM research, and for introducing prevention modalities and new treatments effectively. Outcomes and health economics research are required to assess the cost-effectiveness of new interventions, currently a missing element in the research portfolio. Data sharing and critical mass are essential for innovative research to develop PCM. Despite advances in cancer research, cancer incidence and prevalence is growing. Making cancer research infrastructures accessible for all patients, considering the increasing inequalities, requires science policy actions incentivizing research aimed at prevention and cancer therapeutics/care with an increased focus on patients' needs and cost-effective healthcare.


Assuntos
Neoplasias , Humanos , Cidade do Vaticano , Neoplasias/prevenção & controle , Pesquisa Translacional Biomédica , Atenção à Saúde , Medicina de Precisão
9.
Sci Transl Med ; 15(707): eadf7006, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531417

RESUMO

In lung and prostate adenocarcinomas, neuroendocrine (NE) transformation to an aggressive derivative resembling small cell lung cancer (SCLC) is associated with poor prognosis. We previously described dependency of SCLC on the nuclear transporter exportin 1. Here, we explored the role of exportin 1 in NE transformation. We observed up-regulated exportin 1 in lung and prostate pretransformation adenocarcinomas. Exportin 1 was up-regulated after genetic inactivation of TP53 and RB1 in lung and prostate adenocarcinoma cell lines, accompanied by increased sensitivity to the exportin 1 inhibitor selinexor in vitro. Exportin 1 inhibition prevented NE transformation in different TP53/RB1-inactivated prostate adenocarcinoma xenograft models that acquire NE features upon treatment with the aromatase inhibitor enzalutamide and extended response to the EGFR inhibitor osimertinib in a lung cancer transformation patient-derived xenograft (PDX) model exhibiting combined adenocarcinoma/SCLC histology. Ectopic SOX2 expression restored the enzalutamide-promoted NE phenotype on adenocarcinoma-to-NE transformation xenograft models despite selinexor treatment. Selinexor sensitized NE-transformed lung and prostate small cell carcinoma PDXs to standard cytotoxics. Together, these data nominate exportin 1 inhibition as a potential therapeutic target to constrain lineage plasticity and prevent or treat NE transformation in lung and prostate adenocarcinoma.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Neoplasias da Próstata , Fatores de Transcrição SOXB1 , Carcinoma de Pequenas Células do Pulmão , Humanos , Masculino , Adenocarcinoma/patologia , Regulação para Baixo , Neoplasias Pulmonares/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Carcinoma de Pequenas Células do Pulmão/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Animais , Proteína Exportina 1
11.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502956

RESUMO

The clinical use of potent androgen receptor (AR) inhibitors has promoted the emergence of novel subtypes of metastatic castration-resistant prostate cancer (mCRPC), including neuroendocrine prostate cancer (CRPC-NE), which is highly aggressive and lethal 1 . These mCRPC subtypes display increased lineage plasticity and often lack AR expression 2-5 . Here we show that neuroendocrine differentiation and castration-resistance in CRPC-NE are maintained by the activity of Nuclear Receptor Binding SET Domain Protein 2 (NSD2) 6 , which catalyzes histone H3 lysine 36 dimethylation (H3K36me2). We find that organoid lines established from genetically-engineered mice 7 recapitulate key features of human CRPC-NE, and can display transdifferentiation to neuroendocrine states in culture. CRPC-NE organoids express elevated levels of NSD2 and H3K36me2 marks, but relatively low levels of H3K27me3, consistent with antagonism of EZH2 activity by H3K36me2. Human CRPC-NE but not primary NEPC tumors expresses high levels of NSD2, consistent with a key role for NSD2 in lineage plasticity, and high NSD2 expression in mCRPC correlates with poor survival outcomes. Notably, CRISPR/Cas9 targeting of NSD2 or expression of a dominant-negative oncohistone H3.3K36M mutant results in loss of neuroendocrine phenotypes and restores responsiveness to the AR inhibitor enzalutamide in mouse and human CRPC-NE organoids and grafts. Our findings indicate that NSD2 inhibition can reverse lineage plasticity and castration-resistance, and provide a potential new therapeutic target for CRPC-NE.

12.
Mol Cell ; 83(14): 2398-2416.e12, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37402365

RESUMO

Nuclear receptor-binding SET-domain protein 1 (NSD1), a methyltransferase that catalyzes H3K36me2, is essential for mammalian development and is frequently dysregulated in diseases, including Sotos syndrome. Despite the impacts of H3K36me2 on H3K27me3 and DNA methylation, the direct role of NSD1 in transcriptional regulation remains largely unknown. Here, we show that NSD1 and H3K36me2 are enriched at cis-regulatory elements, particularly enhancers. NSD1 enhancer association is conferred by a tandem quadruple PHD (qPHD)-PWWP module, which recognizes p300-catalyzed H3K18ac. By combining acute NSD1 depletion with time-resolved epigenomic and nascent transcriptomic analyses, we demonstrate that NSD1 promotes enhancer-dependent gene transcription by facilitating RNA polymerase II (RNA Pol II) pause release. Notably, NSD1 can act as a transcriptional coactivator independent of its catalytic activity. Moreover, NSD1 enables the activation of developmental transcriptional programs associated with Sotos syndrome pathophysiology and controls embryonic stem cell (ESC) multilineage differentiation. Collectively, we have identified NSD1 as an enhancer-acting transcriptional coactivator that contributes to cell fate transition and Sotos syndrome development.


Assuntos
Proteínas Nucleares , Síndrome de Sotos , Animais , Humanos , Proteínas Nucleares/metabolismo , Cromatina , Síndrome de Sotos/genética , Síndrome de Sotos/metabolismo , Histona Metiltransferases/genética , Fatores de Transcrição/genética , Diferenciação Celular/genética , Mamíferos/metabolismo , Histona-Lisina N-Metiltransferase/genética
13.
J Exp Med ; 220(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36749798

RESUMO

Metastatic castration-resistant prostate cancer (PC) is the final stage of PC that acquires resistance to androgen deprivation therapies (ADT). Despite progresses in understanding of disease mechanisms, the specific contribution of the metastatic microenvironment to ADT resistance remains largely unknown. The current study identified that the macrophage is the major microenvironmental component of bone-metastatic PC in patients. Using a novel in vivo model, we demonstrated that macrophages were critical for enzalutamide resistance through induction of a wound-healing-like response of ECM-receptor gene expression. Mechanistically, macrophages drove resistance through cytokine activin A that induced fibronectin (FN1)-integrin alpha 5 (ITGA5)-tyrosine kinase Src (SRC) signaling cascade in PC cells. This novel mechanism was strongly supported by bioinformatics analysis of patient transcriptomics datasets. Furthermore, macrophage depletion or SRC inhibition using a novel specific inhibitor significantly inhibited resistant growth. Together, our findings elucidated a novel mechanism of macrophage-induced anti-androgen resistance of metastatic PC and a promising therapeutic approach to treat this deadly disease.


Assuntos
Neoplasias Ósseas , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Antagonistas de Androgênios/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Linhagem Celular Tumoral , Macrófagos/metabolismo , Receptores Androgênicos/genética , Nitrilas/uso terapêutico , Microambiente Tumoral
14.
Res Sq ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38196594

RESUMO

Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an important strategy for precision oncology. To fully capitalize on the potential impact of drugs targeting surface proteins, detailed knowledge about the expression patterns of the target proteins in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting prostate-specific membrane antigen (PSMA) have demonstrated clinical activity. However, PSMA expression is lost in a significant number of CRPC tumors, and the identification of additional cell surface targets is necessary in order to develop new therapeutic approaches. Here, we performed a comprehensive analysis of the expression and co-expression patterns of trophoblast cell-surface antigen 2 (TROP2), delta-like ligand 3 (DLL3), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) in CRPC samples from a rapid autopsy cohort. We show that DLL3 and CEACAM5 exhibit the highest expression in neuroendocrine prostate cancer (NEPC), while TROP2 is expressed across different CRPC molecular subtypes, except for NEPC. We observed variable intra-tumoral and inter-tumoral heterogeneity and no dominant metastatic site predilections for TROP2, DLL3, and CEACAM5. We further show that AR amplifications were associated with higher expression of PSMA and TROP2 but lower DLL3 and CEACAM5 levels. Conversely, PSMA and TROP2 expression was lower in RB1-altered tumors. In addition to genomic alterations, we demonstrate a tight correlation between epigenetic states, particularly histone H3 lysine 27 methylation (H3K27me3) at the transcriptional start site and gene body of TACSTD2 (encoding TROP2), DLL3, and CEACAM5, and their respective protein expression in CRPC patient-derived xenografts. Collectively, these findings provide novel insights into the patterns and determinants of expression of TROP2, DLL3, and CEACAM5 with important implications for the clinical development of cell surface targeting agents in CRPC.

15.
Science ; 377(6611): 1180-1191, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35981096

RESUMO

Drug resistance in cancer is often linked to changes in tumor cell state or lineage, but the molecular mechanisms driving this plasticity remain unclear. Using murine organoid and genetically engineered mouse models, we investigated the causes of lineage plasticity in prostate cancer and its relationship to antiandrogen resistance. We found that plasticity initiates in an epithelial population defined by mixed luminal-basal phenotype and that it depends on increased Janus kinase (JAK) and fibroblast growth factor receptor (FGFR) activity. Organoid cultures from patients with castration-resistant disease harboring mixed-lineage cells reproduce the dependency observed in mice by up-regulating luminal gene expression upon JAK and FGFR inhibitor treatment. Single-cell analysis confirms the presence of mixed-lineage cells with increased JAK/STAT (signal transducer and activator of transcription) and FGFR signaling in a subset of patients with metastatic disease, with implications for stratifying patients for clinical trials.


Assuntos
Plasticidade Celular , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Janus Quinases , Neoplasias da Próstata , Fatores de Transcrição STAT , Antagonistas de Androgênios , Animais , Humanos , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/genética , Janus Quinases/metabolismo , Masculino , Camundongos , Neoplasias Experimentais , Organoides , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
16.
JCO Precis Oncol ; 6: e2200048, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35952322

RESUMO

PURPOSE: Ewing sarcoma (ES) is a primitive sarcoma defined by EWSR1-ETS fusions as the primary driver alteration. To better define the landscape of cooperating secondary genetic alterations in ES, we analyzed clinical genomic profiling data of 113 patients with ES, a cohort including more adult patients (> 18 years) and more patients with advanced stage at presentation than previous genomic cohorts. METHODS: The data set consisted of patients with ES prospectively tested with the US Food and Drug Administration-cleared Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets large panel, hybrid capture-based next-generation sequencing assay. To assess the functional significance of ERF loss, we generated ES cell lines with increased expression of ERF and lines with knockdown of ERF. We assessed cell viability, clonogenic growth, and motility in these ES lines and performed transcriptomic and epigenetic analyses. Finally, we validated our findings in vivo using cell line xenografts. RESULTS: Novel subsets were defined by recurrent secondary alterations in ERF, which encodes an ETS domain transcriptional repressor, in 7% of patients (five truncating mutations, one deep deletion, and two missense mutations) and in FGFR1 in another 2.7% (one amplification and two known activating mutations). ERF alterations were nonoverlapping with STAG2 alterations. In vitro, increased expression of ERF decreased tumor cell growth, colony formation, and motility in two ES cell lines, whereas ERF loss induced cellular proliferation and clonogenic growth. Transcriptomic analysis of cell lines with ERF loss revealed an increased expression of genes and pathways associated with aggressive tumor biology, and epigenetic, chromatin-based studies revealed that ERF competes with EWSR1-FLI1 at ETS-binding sites. CONCLUSION: Our findings open avenues to new insights into ES pathobiology and to novel therapeutic approaches in a subset of patients with ES.


Assuntos
Produtos Biológicos , Tumores Neuroectodérmicos Primitivos Periféricos , Sarcoma de Ewing , Adulto , Produtos Biológicos/uso terapêutico , Genômica , Humanos , Mutação/genética , Estudos Prospectivos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Proteínas Repressoras/genética , Sarcoma de Ewing/genética , Estados Unidos
18.
Mol Cell ; 82(11): 2021-2031.e5, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35447082

RESUMO

The androgen receptor (AR) is a nuclear receptor that governs gene expression programs required for prostate development and male phenotype maintenance. Advanced prostate cancers display AR hyperactivation and transcriptome expansion, in part, through AR amplification and interaction with oncoprotein cofactors. Despite its biological importance, how AR domains and cofactors cooperate to bind DNA has remained elusive. Using single-particle cryo-electron microscopy, we isolated three conformations of AR bound to DNA, showing that AR forms a non-obligate dimer, with the buried dimer interface utilized by ancestral steroid receptors repurposed to facilitate cooperative DNA binding. We identify novel allosteric surfaces which are compromised in androgen insensitivity syndrome and reinforced by AR's oncoprotein cofactor, ERG, and by DNA-binding motifs. Finally, we present evidence that this plastic dimer interface may have been adopted for transactivation at the expense of DNA binding. Our work highlights how fine-tuning AR's cooperative interactions translate to consequences in development and disease.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Microscopia Crioeletrônica , DNA/metabolismo , Dimerização , Humanos , Masculino , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Ativação Transcricional
19.
Cancer Res ; 82(8): 1448-1460, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35195258

RESUMO

Decades of research into the molecular mechanisms of cancer and the development of novel therapeutics have yielded a number of remarkable successes. However, our ability to broadly assign effective, rationally targeted therapies in a personalized manner remains elusive for many patients, and drug resistance persists as a major problem. This is in part due to the well-documented heterogeneity of cancer, including the diversity of tumor cell lineages and cell states, the spectrum of somatic mutations, the complexity of microenvironments, and immune-suppressive features and immune repertoires, which collectively require numerous different therapeutic approaches. Here, we describe a framework to understand the types and biological causes of resistance, providing translational opportunities to tackle drug resistance by rational therapeutic strategies.


Assuntos
Neoplasias , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteômica , Microambiente Tumoral
20.
Cell Rep Methods ; 2(12): 100353, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36590695

RESUMO

We describe a mouse model of rectal cancer (RC) involving rapid tumor organoid engraftment via orthotopic transplantation in an immunocompetent setting. This approach uses simple mechanical disruption to allow engraftment, avoiding the use of dextran sulfate sodium. The resulting RC tumors invaded from the mucosal surface and metastasized to distant organs. Histologically, the tumors closely resemble human RC and mirror remodeling of the tumor microenvironment in response to radiation. This murine RC model thus recapitulates key aspects of human RC pathogenesis and presents an accessible approach for more physiologically accurate, preclinical efficacy studies.


Assuntos
Neoplasias Retais , Camundongos , Humanos , Animais , Neoplasias Retais/radioterapia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA