Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 612(7940): 435-441, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36517711

RESUMO

Guiding many-body systems to desired states is a central challenge of modern quantum science, with applications from quantum computation1,2 to many-body physics3 and quantum-enhanced metrology4. Approaches to solving this problem include step-by-step assembly5,6, reservoir engineering to irreversibly pump towards a target state7,8 and adiabatic evolution from a known initial state9,10. Here we construct low-entropy quantum fluids of light in a Bose-Hubbard circuit by combining particle-by-particle assembly and adiabatic preparation. We inject individual photons into a disordered lattice for which the eigenstates are known and localized, then adiabatically remove this disorder, enabling quantum fluctuations to melt the photons into a fluid. Using our platform11, we first benchmark this lattice melting technique by building and characterizing arbitrary single-particle-in-a-box states, then assemble multiparticle strongly correlated fluids. Intersite entanglement measurements performed through single-site tomography indicate that the particles in the fluid delocalize, whereas two-body density correlation measurements demonstrate that they also avoid one another, revealing Friedel oscillations characteristic of a Tonks-Girardeau gas12,13. This work opens new possibilities for the preparation of topological and otherwise exotic phases of synthetic matter3,14,15.

2.
Nature ; 570(7761): E52, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31130729

RESUMO

Change history: In this Article, two additional references (now added as refs 12 and 14) should have been cited at the end of the sentence "Recently, photonic systems have emerged as a platform of interest for the exploration of synthetic quantum matter.". This has been corrected online.

3.
Nature ; 566(7742): 51-57, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30728523

RESUMO

Superconducting circuits are a competitive platform for quantum computation because they offer controllability, long coherence times and strong interactions-properties that are essential for the study of quantum materials comprising microwave photons. However, intrinsic photon losses in these circuits hinder the realization of quantum many-body phases. Here we use superconducting circuits to explore strongly correlated quantum matter by building a Bose-Hubbard lattice for photons in the strongly interacting regime. We develop a versatile method for dissipative preparation of incompressible many-body phases through reservoir engineering and apply it to our system to stabilize a Mott insulator of photons against losses. Site- and time-resolved readout of the lattice allows us to investigate the microscopic details of the thermalization process through the dynamics of defect propagation and removal in the Mott phase. Our experiments demonstrate the power of superconducting circuits for studying strongly correlated matter in both coherent and engineered dissipative settings. In conjunction with recently demonstrated superconducting microwave Chern insulators, we expect that our approach will enable the exploration of topologically ordered phases of matter.

4.
Rev Sci Instrum ; 87(6): 063109, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27370428

RESUMO

We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...