Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
JMIR Public Health Surveill ; 10: e55211, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713911

RESUMO

BACKGROUND: The relationship between 24-hour rest-activity rhythms (RARs) and risk for dementia or mild cognitive impairment (MCI) remains an area of growing interest. Previous studies were often limited by small sample sizes, short follow-ups, and older participants. More studies are required to fully explore the link between disrupted RARs and dementia or MCI in middle-aged and older adults. OBJECTIVE: We leveraged the UK Biobank data to examine how RAR disturbances correlate with the risk of developing dementia and MCI in middle-aged and older adults. METHODS: We analyzed the data of 91,517 UK Biobank participants aged between 43 and 79 years. Wrist actigraphy recordings were used to derive nonparametric RAR metrics, including the activity level of the most active 10-hour period (M10) and its midpoint, the activity level of the least active 5-hour period (L5) and its midpoint, relative amplitude (RA) of the 24-hour cycle [RA=(M10-L5)/(M10+L5)], interdaily stability, and intradaily variability, as well as the amplitude and acrophase of 24-hour rhythms (cosinor analysis). We used Cox proportional hazards models to examine the associations between baseline RAR and subsequent incidence of dementia or MCI, adjusting for demographic characteristics, comorbidities, lifestyle factors, shiftwork status, and genetic risk for Alzheimer's disease. RESULTS: During the follow-up of up to 7.5 years, 555 participants developed MCI or dementia. The dementia or MCI risk increased for those with lower M10 activity (hazard ratio [HR] 1.28, 95% CI 1.14-1.44, per 1-SD decrease), higher L5 activity (HR 1.15, 95% CI 1.10-1.21, per 1-SD increase), lower RA (HR 1.23, 95% CI 1.16-1.29, per 1-SD decrease), lower amplitude (HR 1.32, 95% CI 1.17-1.49, per 1-SD decrease), and higher intradaily variability (HR 1.14, 95% CI 1.05-1.24, per 1-SD increase) as well as advanced L5 midpoint (HR 0.92, 95% CI 0.85-0.99, per 1-SD advance). These associations were similar in people aged <70 and >70 years, and in non-shift workers, and they were independent of genetic and cardiovascular risk factors. No significant associations were observed for M10 midpoint, interdaily stability, or acrophase. CONCLUSIONS: Based on findings from a large sample of middle-to-older adults with objective RAR assessment and almost 8-years of follow-up, we suggest that suppressed and fragmented daily activity rhythms precede the onset of dementia or MCI and may serve as risk biomarkers for preclinical dementia in middle-aged and older adults.


Assuntos
Disfunção Cognitiva , Demência , Descanso , Humanos , Feminino , Masculino , Disfunção Cognitiva/epidemiologia , Pessoa de Meia-Idade , Idoso , Demência/epidemiologia , Estudos Prospectivos , Descanso/fisiologia , Adulto , Reino Unido/epidemiologia , Actigrafia , Fatores de Risco , Ritmo Circadiano/fisiologia
2.
BMJ Open ; 14(4): e080796, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643014

RESUMO

INTRODUCTION: Surgical patients over 70 experience postoperative delirium (POD) complications in up to 50% of procedures. Sleep/circadian disruption has emerged as a potential risk factor for POD in epidemiological studies. This protocol presents a single-site, prospective observational study designed to examine the relationship between sleep/circadian regulation and POD and how this association could be moderated or mediated by Alzheimer's disease (AD) pathology and genetic risk for AD. METHODS AND ANALYSIS: Study staff members will screen for eligible patients (age ≥70) seeking joint replacement or spinal surgery at Massachusetts General Hospital (MGH). At the inclusion visit, patients will be asked a series of questionnaires related to sleep and cognition, conduct a four-lead ECG recording and be fitted for an actigraphy watch to wear for 7 days before surgery. Blood samples will be collected preoperatively and postoperatively and will be used to gather information about AD variant genes (APOE-ε4) and AD-related pathology (total and phosphorylated tau). Confusion Assessment Method-Scale and Montreal Cognitive Assessment will be completed twice daily for 3 days after surgery. Seven-day actigraphy assessments and Patient-Reported Outcomes Measurement Information System questionnaires will be performed 1, 3 and 12 months after surgery. Relevant patient clinical data will be monitored and recorded throughout the study. ETHICS AND DISSEMINATION: This study is approved by the IRB at MGH, Boston, and it is registered with the US National Institutes of Health on ClinicalTrials.gov (NCT06052397). Plans for dissemination include conference presentations at a variety of scientific institutions. Results from this study are intended to be published in peer-reviewed journals. Relevant updates will be made available on ClinicalTrials.gov. TRIAL REGISTRATION NUMBER: NCT06052397.


Assuntos
Delírio , Delírio do Despertar , Humanos , Estudos Prospectivos , Delírio/diagnóstico , Delírio/etiologia , Complicações Pós-Operatórias/diagnóstico , Estudos de Coortes , Sono , Biomarcadores , Estudos Observacionais como Assunto
4.
Transl Psychiatry ; 14(1): 123, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413574

RESUMO

Nightmares are vivid, extended, and emotionally negative or negative dreams that awaken the dreamer. While sporadic nightmares and bad dreams are common and generally harmless, frequent nightmares often reflect underlying pathologies of emotional regulation. Indeed, insomnia, depression, anxiety, or alcohol use have been associated with nightmares in epidemiological and clinical studies. However, the connection between nightmares and their comorbidities are poorly understood. Our goal was to examine the genetic risk factors for nightmares and estimate correlation or causality between nightmares and comorbidities. We performed a genome-wide association study (GWAS) in 45,255 individuals using a questionnaire-based assessment on the frequency of nightmares during the past month and genome-wide genotyping data. While the GWAS did not reveal individual risk variants, heritability was estimated at 5%. In addition, the genetic correlation analysis showed a robust correlation (rg > 0.4) of nightmares with anxiety (rg = 0.671, p = 7.507e-06), depressive (rg = 0.562, p = 1.282e-07) and posttraumatic stress disorders (rg = 0.4083, p = 0.0152), and personality trait neuroticism (rg = 0.667, p = 4.516e-07). Furthermore, Mendelian randomization suggested causality from insomnia to nightmares (beta = 0.027, p = 0.0002). Our findings suggest that nightmares share genetic background with psychiatric traits and that insomnia may increase an individual's liability to experience frequent nightmares. Given the significant correlations with psychiatric and psychological traits, it is essential to grow awareness of how nightmares affect health and disease and systematically collect information about nightmares, especially from clinical samples and larger cohorts.


Assuntos
Sonhos , Distúrbios do Início e da Manutenção do Sono , Humanos , Sonhos/psicologia , Distúrbios do Início e da Manutenção do Sono/genética , Estudo de Associação Genômica Ampla , Transtornos de Ansiedade , Fatores de Risco
5.
medRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370718

RESUMO

Sleep is a complex behavior regulated by genetic and environmental factors, and is known to influence health outcomes. However, the effect of multidimensional sleep encompassing several sleep dimensions on diseases has yet to be fully elucidated. Using the Mass General Brigham Biobank, we aimed to examine the association of multidimensional sleep with health outcomes and investigate whether sleep behaviors modulate genetic predisposition to unfavorable sleep on mental health outcomes. First, we generated a Polygenic Sleep Health Score using previously identified single nucleotide polymorphisms for sleep health and constructed a Sleep Lifestyle Index using data from self-reported sleep questions and electronic health records; second, we performed phenome-wide association analyses between these indexes and clinical phenotypes; and third, we analyzed the interaction between the indexes on prevalent mental health outcomes. Fifteen thousand eight hundred and eighty-four participants were included in the analysis (mean age 54.4; 58.6% female). The Polygenic Sleep Health Score was associated with the Sleep Lifestyle Index (ß=0.050, 95%CI=0.032, 0.068) and with 114 disease outcomes spanning 12 disease groups, including obesity, sleep, and substance use disease outcomes (p<3.3×10-5). The Sleep Lifestyle Index was associated with 458 disease outcomes spanning 17 groups, including sleep, mood, and anxiety disease outcomes (p<5.1×10-5). No interactions were found between the indexes on prevalent mental health outcomes. These findings suggest that favorable sleep behaviors and genetic predisposition to healthy sleep may independently be protective of disease outcomes. This work provides novel insights into the role of multidimensional sleep on population health and highlights the need to develop prevention strategies focused on healthy sleep habits.

6.
medRxiv ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38352337

RESUMO

Recent genome-wide association studies (GWASs) of several individual sleep traits have identified hundreds of genetic loci, suggesting diverse mechanisms. Moreover, sleep traits are moderately correlated, and together may provide a more complete picture of sleep health, while also illuminating distinct domains. Here we construct novel sleep health scores (SHSs) incorporating five core self-report measures: sleep duration, insomnia symptoms, chronotype, snoring, and daytime sleepiness, using additive (SHS-ADD) and five principal components-based (SHS-PCs) approaches. GWASs of these six SHSs identify 28 significant novel loci adjusting for multiple testing on six traits (p<8.3e-9), along with 341 previously reported loci (p<5e-08). The heritability of the first three SHS-PCs equals or exceeds that of SHS-ADD (SNP-h2=0.094), while revealing sleep-domain-specific genetic discoveries. Significant loci enrich in multiple brain tissues and in metabolic and neuronal pathways. Post GWAS analyses uncover novel genetic mechanisms underlying sleep health and reveal connections to behavioral, psychological, and cardiometabolic traits.

7.
Int J Obes (Lond) ; 48(5): 694-701, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38267484

RESUMO

BACKGROUND: While environmental factors play an important role in weight loss effectiveness, genetics may also influence its success. We examined whether a genome-wide polygenic score for BMI was associated with weight loss effectiveness and aimed to identify common genetic variants associated with weight loss. METHODS: Participants in the ONTIME study (n = 1210) followed a uniform, multimodal behavioral weight-loss intervention. We first tested associations between a genome-wide polygenic score for higher BMI and weight loss effectiveness (total weight loss, rate of weight loss, and attrition). We then conducted a genome-wide association study (GWAS) for weight loss in the ONTIME study and performed the largest weight loss meta-analysis with earlier studies (n = 3056). Lastly, we ran exploratory GWAS in the ONTIME study for other weight loss outcomes and related factors. RESULTS: We found that each standard deviation increment in the polygenic score was associated with a decrease in the rate of weight loss (Beta (95% CI) = -0.04 kg per week (-0.06, -0.01); P = 3.7 × 10-03) and with higher attrition after adjusting by treatment duration. No associations reached genome-wide significance in meta-analysis with previous GWAS studies for weight loss. However, associations in the ONTIME study showed effects consistent with published studies for rs545936 (MIR486/NKX6.3/ANK1), a previously noted weight loss locus. In the meta-analysis, each copy of the minor A allele was associated with 0.12 (0.03) kg/m2 higher BMI at week five of treatment (P = 3.9 × 10-06). In the ONTIME study, we also identified two genome-wide significant (P < 5×10-08) loci for the rate of weight loss near genes implicated in lipolysis, body weight, and metabolic regulation: rs146905606 near NFIP1/SPRY4/FGF1; and rs151313458 near LSAMP. CONCLUSION: Our findings are expected to help in developing personalized weight loss approaches based on genetics. CLINICAL TRIAL REGISTRATION: Obesity, Nutrigenetics, Timing, and Mediterranean (ONTIME; clinicaltrials.gov: NCT02829619) study.


Assuntos
Índice de Massa Corporal , Estudo de Associação Genômica Ampla , Obesidade , Redução de Peso , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Herança Multifatorial/genética , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Redução de Peso/genética
8.
JAMA Netw Open ; 7(1): e2350358, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38175645

RESUMO

Importance: Observational studies have associated anorexia nervosa with circadian rhythms and sleep traits. However, the direction of causality and the extent of confounding by psychosocial comorbidities in these associations are unknown. Objectives: To investigate the association between anorexia nervosa and circadian and sleep traits through mendelian randomization and to test the associations between a polygenic risk score (PRS) for anorexia nervosa and sleep disorders in a clinical biobank. Design, Setting, and Participants: This genetic association study used bidirectional 2-sample mendelian randomization with summary-level genetic associations between anorexia nervosa (from the Psychiatric Genomics Consortium) and chronotype and sleep traits (primarily from the UK Biobank). The inverse-variance weighted method, in addition to other sensitivity approaches, was used. From the clinical Mass General Brigham (MGB) Biobank (n = 47 082), a PRS for anorexia nervosa was calculated for each patient and associations were tested with prevalent sleep disorders derived from electronic health records. Patients were of European ancestry. All analyses were performed between February and August 2023. Exposures: Genetic instruments for anorexia nervosa, chronotype, daytime napping, daytime sleepiness, insomnia, and sleep duration. Main Outcomes and Measures: Chronotype, sleep traits, risk of anorexia nervosa, and sleep disorders derived from a clinical biobank. Results: The anorexia nervosa genome-wide association study included 16 992 cases (87.7%-97.4% female) and 55 525 controls (49.6%-63.4% female). Genetic liability for anorexia nervosa was associated with a more morning chronotype (ß = 0.039; 95% CI, 0.006-0.072), and conversely, genetic liability for morning chronotype was associated with increased risk of anorexia nervosa (ß = 0.178; 95% CI, 0.042-0.315). Associations were robust in sensitivity and secondary analyses. Genetic liability for insomnia was associated with increased risk of anorexia nervosa (ß = 0.369; 95% CI, 0.073-0.666); however, sensitivity analyses indicated bias due to horizontal pleiotropy. The MGB Biobank analysis included 47 082 participants with a mean (SD) age of 60.4 (17.0) years and 25 318 (53.8%) were female. A PRS for anorexia nervosa was associated with organic or persistent insomnia in the MGB Biobank (odds ratio, 1.10; 95% CI, 1.03-1.17). No associations were evident for anorexia nervosa with other sleep traits. Conclusions and Relevance: The results of this study suggest that in contrast to other metabo-psychiatric diseases, anorexia nervosa is a morningness eating disorder and further corroborate findings implicating insomnia in anorexia nervosa. Future studies in diverse populations and with subtypes of anorexia nervosa are warranted.


Assuntos
Anorexia Nervosa , Distúrbios do Início e da Manutenção do Sono , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anorexia Nervosa/complicações , Anorexia Nervosa/epidemiologia , Anorexia Nervosa/genética , Ritmo Circadiano/genética , Estratificação de Risco Genético , Estudo de Associação Genômica Ampla , Sono , Adulto , Idoso
9.
Sleep ; 47(1)2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-37738616

RESUMO

Abnormally short and long sleep are associated with premature mortality, and achieving optimal sleep duration has been the focus of sleep health guidelines. Emerging research demonstrates that sleep regularity, the day-to-day consistency of sleep-wake timing, can be a stronger predictor for some health outcomes than sleep duration. The role of sleep regularity in mortality, however, has not been investigated in a large cohort with objective data. We therefore aimed to compare how sleep regularity and duration predicted risk for all-cause and cause-specific mortality. We calculated Sleep Regularity Index (SRI) scores from > 10 million hours of accelerometer data in 60 977 UK Biobank participants (62.8 ±â€…7.8 years, 55.0% female, median[IQR] SRI: 81.0[73.8-86.3]). Mortality was reported up to 7.8 years after accelerometer recording in 1859 participants (4.84 deaths per 1000 person-years, mean (±SD) follow-up of 6.30 ±â€…0.83 years). Higher sleep regularity was associated with a 20%-48% lower risk of all-cause mortality (p < .001 to p = 0.004), a 16%-39% lower risk of cancer mortality (p < 0.001 to p = 0.017), and a 22%-57% lower risk of cardiometabolic mortality (p < 0.001 to p = 0.048), across the top four SRI quintiles compared to the least regular quintile. Results were adjusted for age, sex, ethnicity, and sociodemographic, lifestyle, and health factors. Sleep regularity was a stronger predictor of all-cause mortality than sleep duration, by comparing equivalent mortality models, and by comparing nested SRI-mortality models with and without sleep duration (p = 0.14-0.20). These findings indicate that sleep regularity is an important predictor of mortality risk and is a stronger predictor than sleep duration. Sleep regularity may be a simple, effective target for improving general health and survival.


Assuntos
Estilo de Vida , Sono , Humanos , Feminino , Masculino , Estudos Prospectivos , Actigrafia , Fatores de Tempo
10.
Nutr Clin Pract ; 39(2): 426-436, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37777983

RESUMO

BACKGROUND: Patients receiving home parenteral nutrition (HPN) frequently report disrupted sleep. However, there are often inconsistencies between objectively measured and questionnaire-derived sleep measures. We compared sleep measures estimated from wrist actigraphy and self-report in adults receiving HPN. METHODS: In this secondary analysis, we pooled data from two sleep-related studies enrolling adults receiving habitual HPN. We compared measures from 7-day averages of wrist actigraphy against comparable responses to a sleep questionnaire. Sleep measures included bedtime, wake time, time in bed, total sleep time, and sleep onset latency (SOL). Spearman correlation coefficients, Bland-Altman plots, and linear regression models for each set of sleep measures provided estimates of agreement. RESULTS: Participants (N = 35) had a mean age of 52 years, body mass index of 21.6 kg/m2 , and 77% identified as female. Correlation coefficients ranged from 0.35 to 0.90, were highest for wake time (r = 0.90) and bedtime (r = 0.74), and lowest for total sleep time (r = 0.35). Actigraphy overestimated self-reported bedtime, wake time, and total sleep time and underestimated self-reported time in bed and SOL. Regression coefficients indicated the highest calibration for bedtime and wake time and lower calibration for time in bed, total sleep time, and SOL. CONCLUSION: We observed strong-to-moderate agreement between sleep measures derived from wrist actigraphy and self-report in adults receiving HPN. Weaker correlations for total sleep time and SOL may indicate low wrist actigraphy sensitivity. Low-quality sleep resulting from sleep disruptions may have also contributed to an underreporting of perceived sleep quantity and lower concordance.


Assuntos
Actigrafia , Sono , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Actigrafia/métodos , Polissonografia/métodos , Autorrelato , Sono/fisiologia , Inquéritos e Questionários , Masculino
11.
Hypertension ; 81(2): 264-272, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37901968

RESUMO

BACKGROUND: Preeclampsia, a pregnancy-specific condition associated with new-onset hypertension after 20-weeks gestation, is a leading cause of maternal and neonatal morbidity and mortality. Predictive tools to understand which individuals are most at risk are needed. METHODS: We identified a cohort of N=1125 pregnant individuals who delivered between May 2015 and May 2022 at Mass General Brigham Hospitals with available electronic health record data and linked genetic data. Using clinical electronic health record data and systolic blood pressure polygenic risk scores derived from a large genome-wide association study, we developed machine learning (XGBoost) and logistic regression models to predict preeclampsia risk. RESULTS: Pregnant individuals with a systolic blood pressure polygenic risk score in the top quartile had higher blood pressures throughout pregnancy compared with patients within the lowest quartile systolic blood pressure polygenic risk score. In the first trimester, the most predictive model was XGBoost, with an area under the curve of 0.74. In late pregnancy, with data obtained up to the delivery admission, the best-performing model was XGBoost using clinical variables, which achieved an area under the curve of 0.91. Adding the systolic blood pressure polygenic risk score to the models did not improve the performance significantly based on De Long test comparing the area under the curve of models with and without the polygenic score. CONCLUSIONS: Integrating clinical factors into predictive models can inform personalized preeclampsia risk and achieve higher predictive power than the current practice. In the future, personalized tools can be implemented to identify high-risk patients for preventative therapies and timely intervention to improve adverse maternal and neonatal outcomes.


Assuntos
Pré-Eclâmpsia , Feminino , Recém-Nascido , Gravidez , Humanos , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/epidemiologia , Pré-Eclâmpsia/genética , Estratificação de Risco Genético , Estudo de Associação Genômica Ampla , Valor Preditivo dos Testes , Aprendizado de Máquina , Fatores de Risco
12.
Am J Clin Nutr ; 119(2): 569-577, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043867

RESUMO

BACKGROUND: Patients with short bowel syndrome (SBS) dependent on home parenteral nutrition (HPN) commonly cycle infusions overnight, likely contributing to circadian misalignment and sleep disruption. METHODS: The objective of this quasi-experimental, single-arm, controlled, pilot trial was to examine the feasibility, safety, and efficacy of daytime infusions of HPN in adults with SBS without diabetes. Enrolled patients were fitted with a continuous glucose monitor and wrist actigraph and were instructed to cycle their infusions overnight for 1 wk, followed by daytime for another week. The 24-h average blood glucose, the time spent >140 mg/dL or <70 mg/dL, and sleep fragmentation were derived for each week and compared using Wilcoxon signed-rank test. Patient-reported quality-of-life outcomes were also compared between the weeks. RESULTS: Twenty patients (mean age, 51.7 y; 75% female; mean body mass index, 21.5 kg/m2) completed the trial. Overnight infusions started at 21:00 and daytime infusions at 09:00. No serious adverse events were noted. There were no differences in 24-h glycemia (daytime-median: 93.00 mg/dL; 95% CI: 87.7-99.9 mg/dL, compared with overnight-median: 91.1 mg/dL; 95% CI: 89.6-99.0 mg/dL; P = 0.922). During the day hours (09:00-21:00), the mean glucose concentrations were 13.5 (5.7-22.0) mg/dL higher, and the time spent <70 mg/dL was 15.0 (-170.0, 22.5) min lower with daytime than with overnight HPN. Conversely, during the night hours (21:00-09:00), the glucose concentrations were 16.6 (-23.1, -2.2) mg/dL lower with daytime than with overnight HPN. There were no differences in actigraphy-derived measures of sleep and activity rhythms; however, sleep timing was later, and light at night exposure was lower with daytime than with overnight HPN. Patients reported less sleep disruptions due to urination and fewer episodes of uncontrollable diarrhea or ostomy output with daytime HPN. CONCLUSIONS: Daytime HPN was feasible and safe in adults with SBS and, compared with overnight HPN, improved subjective sleep without increasing 24-h glucose concentrations. This trial was registered at clinicaltrials.gov as NCT04743960 (https://classic. CLINICALTRIALS: gov/ct2/show/NCT04743960).


Assuntos
Nutrição Parenteral no Domicílio , Síndrome do Intestino Curto , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glucose , Nutrição Parenteral no Domicílio/efeitos adversos , Projetos Piloto , Síndrome do Intestino Curto/terapia , Sono
14.
Sleep ; 47(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37982563

RESUMO

STUDY OBJECTIVES: Over 10% of the population in Europe and in the United States use sleep medication to manage sleep problems. Our objective was to elucidate genetic risk factors and clinical correlates that contribute to sleep medication purchase and estimate the comorbid impact of sleep problems. METHODS: We performed epidemiological analysis for psychiatric diagnoses, and genetic association studies of sleep medication purchase in 797 714 individuals from FinnGen Release 7 (N = 311 892) and from the UK Biobank (N = 485 822). Post-association analyses included genetic correlation, co-localization, Mendelian randomization (MR), and polygenic risk estimation. RESULTS: In a GWAS we identified 27 genetic loci significantly associated with sleep medication, located in genes associated with sleep; AUTS2, CACNA1C, MEIS1, KIRREL3, PAX8, GABRA2, psychiatric traits; CACNA1C, HIST1H2BD, NUDT12. TOPAZ1 and TSNARE1. Co-localization and expression analysis emphasized effects on the KPNA2, GABRA2, and CACNA1C expression in the brain. Sleep medications use was epidemiologically related to psychiatric traits in FinnGen (OR [95% (CI)] = 3.86 [3.78 to 3.94], p < 2 × 10-16), and the association was accentuated by genetic correlation and MR; depression (rg = 0.55 (0.027), p = 2.86 × 10-89, p MR = 4.5 × 10-5), schizophrenia (rg = 0.25 (0.026), p = 2.52 × 10-21, p MR = 2 × 10-4), and anxiety (rg = 0.44 (0.047), p = 2.88 × 10-27, p MR = 8.6 × 10-12). CONCLUSIONS: These results demonstrate the genetics behind sleep problems and the association between sleep problems and psychiatric traits. Our results highlight the scientific basis for sleep management in treating the impact of psychiatric diseases.


Assuntos
Esquizofrenia , Transtornos do Sono-Vigília , Humanos , Sono/genética , Fenótipo , Comorbidade , Transtornos do Sono-Vigília/complicações , Transtornos do Sono-Vigília/tratamento farmacológico , Transtornos do Sono-Vigília/genética , Estudo de Associação Genômica Ampla/métodos
15.
J Am Heart Assoc ; 12(24): e030568, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38084713

RESUMO

BACKGROUND: Excessive daytime sleepiness (EDS), experienced in 10% to 20% of the population, has been associated with cardiovascular disease and death. However, the condition is heterogeneous and is prevalent in individuals having short and long sleep duration. We sought to clarify the relationship between sleep duration subtypes of EDS with cardiovascular outcomes, accounting for these subtypes. METHODS AND RESULTS: We defined 3 sleep duration subtypes of excessive daytime sleepiness: normal (6-9 hours), short (<6 hours), and long (>9 hours), and compared these with a nonsleepy, normal-sleep-duration reference group. We analyzed their associations with incident myocardial infarction (MI) and stroke using medical records of 355 901 UK Biobank participants and performed 2-sample Mendelian randomization for each outcome. Compared with healthy sleep, long-sleep EDS was associated with an 83% increased rate of MI (hazard ratio, 1.83 [95% CI, 1.21-2.77]) during 8.2-year median follow-up, adjusting for multiple health and sociodemographic factors. Mendelian randomization analysis provided supporting evidence of a causal role for a genetic long-sleep EDS subtype in MI (inverse-variance weighted ß=1.995, P=0.001). In contrast, we did not find evidence that other subtypes of EDS were associated with incident MI or any associations with stroke (P>0.05). CONCLUSIONS: Our study suggests the previous evidence linking EDS with increased cardiovascular disease risk may be primarily driven by the effect of its long-sleep subtype on higher risk of MI. Underlying mechanisms remain to be investigated but may involve sleep irregularity and circadian disruption, suggesting a need for novel interventions in this population.


Assuntos
Doenças Cardiovasculares , Distúrbios do Sono por Sonolência Excessiva , Infarto do Miocárdio , Acidente Vascular Cerebral , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Distúrbios do Sono por Sonolência Excessiva/epidemiologia , Distúrbios do Sono por Sonolência Excessiva/genética , Sono , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/complicações , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/genética
16.
PLoS Comput Biol ; 19(9): e1011510, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37769026

RESUMO

The circadian system drives near-24-h oscillations in behaviors and biological processes. The underlying core molecular clock regulates the expression of other genes, and it has been shown that the expression of more than 50 percent of genes in mammals displays 24-h rhythmic patterns, with the specific genes that cycle varying from one tissue to another. Determining rhythmic gene expression patterns in human tissues sampled as single timepoints has several challenges, including the reconstruction of temporal order of highly noisy data. Previous methodologies have attempted to address these challenges in one or a small number of tissues for which rhythmic gene evolutionary conservation is assumed to be preserved. Here we introduce CIRCUST, a novel CIRCular-robUST methodology for analyzing molecular rhythms, that relies on circular statistics, is robust against noise, and requires fewer assumptions than existing methodologies. Next, we validated the method against four controlled experiments in which sampling times were known, and finally, CIRCUST was applied to 34 tissues from the Genotype-Tissue Expression (GTEx) dataset with the aim towards building a comprehensive daily rhythm gene expression atlas in humans. The validation and application shown here indicate that CIRCUST provides a flexible framework to formulate and solve the issues related to the analysis of molecular rhythms in human tissues. CIRCUST methodology is publicly available at https://github.com/yolandalago/CIRCUST/.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Humanos , Ritmo Circadiano/genética , Expressão Gênica , Regulação da Expressão Gênica/genética , Relógios Circadianos/genética , Mamíferos/genética
17.
Sleep ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555446

RESUMO

The Circadia Study (Circadia) is a novel "direct-to-participant" research study investigating the genetics of circadian rhythm disorders of advanced and delayed sleep phase and non-24 hour rhythms. The goals of the Circadia Study are twofold: (i) to create an easy-to-use toolkit for at-home circadian phase assessment for patients with circadian rhythm disorders through the use of novel in-home based surveys, tests, and collection kits; and (ii) create a richly phenotyped patient resource for genetic studies that will lead to new genetic loci associated with circadian rhythm disorders revealing possible loci of interest to target in the development of therapeutics for circadian rhythm disorders. Through these goals, we aim to broaden our understanding and elucidate the genetics of circadian rhythm disorders across a diverse patient population while increasing accessibility to circadian rhythm disorder diagnostics reducing health disparities through self-directed at-home dim light melatonin onset (DLMO) collections.

18.
Brain Commun ; 5(4): fcad200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492488

RESUMO

As suggested by previous research, sleep health is assumed to be a key determinant of future morbidity and mortality. In line with this, recent studies have found that poor sleep is associated with impaired cognitive function. However, to date, little is known about brain structural abnormalities underlying this association. Although recent findings link sleep health deficits to specific alterations in grey matter volume, evidence remains inconsistent and reliant on small sample sizes. Addressing this problem, the current preregistered study investigated associations between sleep health and grey matter volume (139 imaging-derived phenotypes) in the UK Biobank cohort (33 356 participants). Drawing on a large sample size and consistent data acquisition, sleep duration, insomnia symptoms, daytime sleepiness, chronotype, sleep medication and sleep apnoea were examined. Our main analyses revealed that long sleep duration was systematically associated with larger grey matter volume of basal ganglia substructures. Insomnia symptoms, sleep medication and sleep apnoea were not associated with any of the 139 imaging-derived phenotypes. Short sleep duration, daytime sleepiness as well as late and early chronotype were associated with solitary imaging-derived phenotypes (no recognizable pattern, small effect sizes). To our knowledge, this is the largest study to test associations between sleep health and grey matter volume. Clinical implications of the association between long sleep duration and larger grey matter volume of basal ganglia are discussed. Insomnia symptoms as operationalized in the UK Biobank do not translate into grey matter volume findings.

19.
EBioMedicine ; 93: 104630, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37301713

RESUMO

BACKGROUND: Poor sleep is associated with an increased risk of infections and all-cause mortality but the causal direction between poor sleep and respiratory infections has remained unclear. We examined if poor sleep contributes as a causal risk factor to respiratory infections. METHODS: We used data on insomnia, influenza and upper respiratory infections (URIs) from primary care and hospital records in the UK Biobank (N ≈ 231,000) and FinnGen (N ≈ 392,000). We computed logistic regression to assess association between poor sleep and infections, disease free survival hazard ratios, and performed Mendelian randomization analyses to assess causality. FINDINGS: Utilizing 23 years of registry data and follow-up, we discovered that insomnia diagnosis associated with increased risk for infections (FinnGen influenza Cox's proportional hazard (CPH) HR = 4.34 [3.90, 4.83], P = 4.16 × 10-159, UK Biobank influenza CPH HR = 1.54 [1.37, 1.73], P = 2.49 × 10-13). Mendelian randomization indicated that insomnia causally predisposed to influenza (inverse-variance weighted (IVW) OR = 1.65, P = 5.86 × 10-7), URI (IVW OR = 1.94, P = 8.14 × 10-31), COVID-19 infection (IVW OR = 1.08, P = 0.037) and risk of hospitalization from COVID-19 (IVW OR = 1.47, P = 4.96 × 10-5). INTERPRETATION: Our findings indicate that chronic poor sleep is a causal risk factor for contracting respiratory infections, and in addition contributes to the severity of respiratory infections. These findings highlight the role of sleep in maintaining sufficient immune response against pathogens. FUNDING: Instrumentarium Science Foundation, Academy of Finland, Signe and Ane Gyllenberg Foundation, National Institutes of Health.


Assuntos
COVID-19 , Influenza Humana , Infecções Respiratórias , Distúrbios do Início e da Manutenção do Sono , Humanos , Influenza Humana/complicações , Influenza Humana/epidemiologia , Saúde Pública , COVID-19/complicações , COVID-19/epidemiologia , Infecções Respiratórias/complicações , Infecções Respiratórias/epidemiologia , Sono , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
20.
PLoS One ; 18(5): e0285703, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37195925

RESUMO

Sleep is an important indicator of a person's health, and its accurate and cost-effective quantification is of great value in healthcare. The gold standard for sleep assessment and the clinical diagnosis of sleep disorders is polysomnography (PSG). However, PSG requires an overnight clinic visit and trained technicians to score the obtained multimodality data. Wrist-worn consumer devices, such as smartwatches, are a promising alternative to PSG because of their small form factor, continuous monitoring capability, and popularity. Unlike PSG, however, wearables-derived data are noisier and far less information-rich because of the fewer number of modalities and less accurate measurements due to their small form factor. Given these challenges, most consumer devices perform two-stage (i.e., sleep-wake) classification, which is inadequate for deep insights into a person's sleep health. The challenging multi-class (three, four, or five-class) staging of sleep using data from wrist-worn wearables remains unresolved. The difference in the data quality between consumer-grade wearables and lab-grade clinical equipment is the motivation behind this study. In this paper, we present an artificial intelligence (AI) technique termed sequence-to-sequence LSTM for automated mobile sleep staging (SLAMSS), which can perform three-class (wake, NREM, REM) and four-class (wake, light, deep, REM) sleep classification from activity (i.e., wrist-accelerometry-derived locomotion) and two coarse heart rate measures-both of which can be reliably obtained from a consumer-grade wrist-wearable device. Our method relies on raw time-series datasets and obviates the need for manual feature selection. We validated our model using actigraphy and coarse heart rate data from two independent study populations: the Multi-Ethnic Study of Atherosclerosis (MESA; N = 808) cohort and the Osteoporotic Fractures in Men (MrOS; N = 817) cohort. SLAMSS achieves an overall accuracy of 79%, weighted F1 score of 0.80, 77% sensitivity, and 89% specificity for three-class sleep staging and an overall accuracy of 70-72%, weighted F1 score of 0.72-0.73, 64-66% sensitivity, and 89-90% specificity for four-class sleep staging in the MESA cohort. It yielded an overall accuracy of 77%, weighted F1 score of 0.77, 74% sensitivity, and 88% specificity for three-class sleep staging and an overall accuracy of 68-69%, weighted F1 score of 0.68-0.69, 60-63% sensitivity, and 88-89% specificity for four-class sleep staging in the MrOS cohort. These results were achieved with feature-poor inputs with a low temporal resolution. In addition, we extended our three-class staging model to an unrelated Apple Watch dataset. Importantly, SLAMSS predicts the duration of each sleep stage with high accuracy. This is especially significant for four-class sleep staging, where deep sleep is severely underrepresented. We show that, by appropriately choosing the loss function to address the inherent class imbalance, our method can accurately estimate deep sleep time (SLAMSS/MESA: 0.61±0.69 hours, PSG/MESA ground truth: 0.60±0.60 hours; SLAMSS/MrOS: 0.53±0.66 hours, PSG/MrOS ground truth: 0.55±0.57 hours;). Deep sleep quality and quantity are vital metrics and early indicators for a number of diseases. Our method, which enables accurate deep sleep estimation from wearables-derived data, is therefore promising for a variety of clinical applications requiring long-term deep sleep monitoring.


Assuntos
Actigrafia , Inteligência Artificial , Masculino , Humanos , Frequência Cardíaca/fisiologia , Sono/fisiologia , Fases do Sono/fisiologia , Fatores de Tempo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...