Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Public Health ; 17(7): 102448, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38815532

RESUMO

BACKGROUND: Influenza A virus causes severe respiratory illnesses, especially in developing nations where most child deaths under 5 occur due to lower respiratory tract infections. The RIG-I protein acts as a sensor for viral dsRNA, triggering interferon production through K63-linked poly-ubiquitin chains synthesized by TRIM25. However, the influenza A virus's NS1 protein hinders this process by binding to TRIM25, disrupting its association with RIG-I and preventing downstream interferon signalling, contributing to the virus's evasion of the immune response. METHODS: In our study we used structural-based drug designing, molecular simulation, and binding free energy approaches to identify the potent phytocompounds from various natural product databases (>100,000 compounds) able to inhibit the binding of NS1 with the TRIM25. RESULTS: The molecular screening identified EA-8411902 and EA-19951545 from East African Natural Products Database, NA-390261 and NA-71 from North African Natural Products Database, SA-65230 and SA- 4477104 from South African Natural Compounds Database, NEA- 361 and NEA- 4524784 from North-East African Natural Products Database, TCM-4444713 and TCM-6056 from Traditional Chinese Medicines Database as top hits. The molecular docking and binding free energies results revealed that these compounds have high affinity with the specific active site residues (Leu95, Ser99, and Tyr89) involved in the interaction with TRIM25. Additionally, analysis of structural dynamics, binding free energy, and dissociation constants demonstrates a notably stronger binding affinity of these compounds with the NS1 protein. Moreover, all selected compounds exhibit exceptional ADMET properties, including high water solubility, gastrointestinal absorption, and an absence of hepatotoxicity, while adhering to Lipinski's rule. CONCLUSION: Our molecular simulation findings highlight that the identified compounds demonstrate high affinity for specific active site residues involved in the NS1-TRIM25 interaction, exhibit exceptional ADMET properties, and adhere to drug-likeness criteria, thus presenting promising candidates for further development as antiviral agents against influenza A virus infections.

2.
Front Pharmacol ; 14: 1202128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670941

RESUMO

Introduction: Hypoxia-inducible factor (HIF) prolyl hydroxylase domain (PHD) enzymes are major therapeutic targets of anemia and ischemic/hypoxia diseases. To overcome safety issues, liver failure, and problems associated with on-/off-targets, natural products due to their novel and unique structures offer promising alternatives as drug targets. Methods: In the current study, the Marine Natural Products, North African, South African, East African, and North-East African chemical space was explored for HIF-PHD inhibitors discovery through molecular search, and the final hits were validated using molecular simulation and free energy calculation approaches. Results: Our results revealed that CMNPD13808 with a docking score of -8.690 kcal/mol, CID15081178 with a docking score of -8.027 kcal/mol, CID71496944 with a docking score of -8.48 kcal/mol and CID11821407 with a docking score of -7.78 kcal/mol possess stronger activity than the control N-[(4-hydroxy-8-iodoisoquinolin-3-yl)carbonyl]glycine, 4HG (-6.87 kcal/mol). Interaction analysis revealed that the target compounds interact with Gln239, Tyr310, Tyr329, Arg383 and Trp389 residues, and chelate the active site iron in a bidentate manner in PHD2. Molecular simulation revealed that these target hits robustly block the PHD2 active site by demonstrating stable dynamics. Furthermore, the half-life of the Arg383 hydrogen bond with the target ligands, which is an important factor for PHD2 inhibition, remained almost constant in all the complexes during the simulation. Finally, the total binding free energy of each complex was calculated as CMNPD13808-PHD2 -72.91 kcal/mol, CID15081178-PHD2 -65.55 kcal/mol, CID71496944-PHD2 -68.47 kcal/mol, and CID11821407-PHD2 -62.06 kcal/mol, respectively. Conclusion: The results show the compounds possess good activity in contrast to the control drug (4HG) and need further in vitro and in vivo validation for possible usage as potential drugs against HIF-PHD2-associated diseases.

3.
Appl Biochem Biotechnol ; 195(11): 6959-6978, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36961512

RESUMO

Because of the essential role of PLpro in the regulation of replication and dysregulation of the host immune sensing, it is considered a therapeutic target for novel drug development. To reduce the risk of immune evasion and vaccine effectiveness, small molecular therapeutics are the best complementary approach. Hence, we used a structure-based drug-designing approach to identify potential small molecular inhibitors for PLpro of SARS-CoV-2. Initial scoring and re-scoring of the best hits revealed that three compounds NPC320891 (2,2-Dihydroxyindene-1,3-Dione), NPC474594 (Isonarciclasine), and NPC474595 (7-Deoxyisonarciclasine) exhibit higher docking scores than the control GRL0617. Investigation of the binding modes revealed that alongside the essential contacts, i.e., Asp164, Glu167, Tyr264, and Gln269, these molecules also target Lys157 and Tyr268 residues in the active site. Moreover, molecular simulation demonstrated that the reported top hits also possess stable dynamics and structural packing. Furthermore, the residues' flexibility revealed that all the complexes demonstrated higher flexibility in the regions 120-140, 160-180, and 205-215. The 120-140 and 160-180 lie in the finger region of PLpro, which may open/close during the simulation to cover the active site and push the ligand inside. In addition, the total binding free energy was reported to be - 32.65 ± 0.17 kcal/mol for the GRL0617-PLpro, for the NPC320891-PLpro complex, the TBE was - 35.58 ± 0.14 kcal/mol, for the NPC474594-PLpro, the TBE was - 43.72 ± 0.22 kcal/mol, while for NPC474595-PLpro complex, the TBE was calculated to be - 41.61 ± 0.20 kcal/mol, respectively. Clustering of the protein's motion and FEL further revealed that in NPC474594 and NPC474595 complexes, the drug was seen to have moved inside the binding cavity along with the loop in the palm region harboring the catalytic triad, thus justifying the higher binding of these two molecules particularly. In conclusion, the overall results reflect favorable binding of the identified hits strongly than the control drug, thus demanding in vitro and in vivo validation for clinical purposes.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , SARS-CoV-2 , Compostos de Anilina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
4.
RSC Adv ; 12(12): 7318-7327, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35424688

RESUMO

A new variant of SARS-CoV-2 known as the omicron variant (B.1.1.529) reported in South Africa with 30 mutations in the whole spike protein, among which 15 mutations are in the receptor-binding domain, is continuously spreading exponentially around the world. The omicron variant is reported to be highly contagious with antibody-escaping activity. The emergence of antibody-escaping variants is alarming, and thus the quick discovery of small molecule inhibitors is needed. Hence, the current study uses computational drug screening and molecular dynamics simulation approaches (replicated) to identify novel drugs that can inhibit the binding of the receptor-binding domain (RBD) with hACE2. Screening of the North African, East African and North-East African medicinal compound databases by employing a multi-step screening approach revealed four compounds, namely (-)-pipoxide (C1), 2-(p-hydroxybenzyl) benzofuran-6-ol (C2), 1-(4-hydroxy-3-methoxyphenyl)-2-{4-[(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol (C3), and Rhein (C4), with excellent anti-viral properties against the RBD of the omicron variant. Investigation of the dynamics demonstrates stable behavior, good residue flexibility profiles, and structural compactness. Validation of the top hits using computational bioactivity analysis, binding free energy calculations and dissociation constant (K D) analysis also indicated the anti-viral properties of these compounds. In conclusion, this study will help in the design and discovery of novel drug therapeutics, which may be used against the emerging omicron variant of SARS-CoV-2.

5.
Interdiscip Sci ; 12(2): 155-168, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32056139

RESUMO

Breast cancer is the most common cause of death in women worldwide. Approximately 5%-10% of instances are attributed to mutations acquired from the parents. Therefore, it is highly recommended to design more potential drugs and drug targets to eradicate such complex diseases. Network-based gene expression profiling is a suggested tool for discovering drug targets by incorporating various factors such as disease states, intensities based on gene expression as well as protein-protein interactions. To find prospective biomarkers in breast cancer, we first identified differentially expressed genes (DEGs) statistical methods p-value and false discovery rate were initially used. Of the total 82 DEGs, 67 were upregulated while the remaining 17 were downregulated. Sub-modules and hub genes include VEGFA with the highest degree, followed by 15 CCND1 and CXCL8 with 12-degree score was found. The survival analysis revealed that all the hub genes have important role in the development and progression of breast cancer. Enrichment analysis revealed that most of these genes are involved in signaling pathways and in the extracellular spaces. We also identified transcription factors and kinases, which regulate proteins in the DEGs PPI. Finally, drugs for each hub genes were identified. These results further expanded the knowledge regarding important biomarkers in breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Biologia Computacional/métodos , Ciclina D1/genética , Ciclina D1/metabolismo , Descoberta de Drogas/métodos , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Modelos Biológicos , Fosfotransferases/genética , Fosfotransferases/metabolismo , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transdução de Sinais , Análise de Sobrevida , Biologia de Sistemas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Sci Rep ; 9(1): 13321, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527719

RESUMO

Helicobacter Pylori is a known causal agent of gastric malignancies and peptic ulcers. The extremophile nature of this bacterium is protecting it from designing a potent drug against it. Therefore, the use of computational approaches to design antigenic, stable and safe vaccine against this pathogen could help to control the infections associated with it. Therefore, in this study, we used multiple immunoinformatics approaches along with other computational approaches to design a multi-epitopes subunit vaccine against H. Pylori. A total of 7 CTL and 12 HTL antigenic epitopes based on c-terminal cleavage and MHC binding scores were predicted from the four selected proteins (CagA, OipA, GroEL and cagA). The predicted epitopes were joined by AYY and GPGPG linkers. Β-defensins adjuvant was added to the N-terminus of the vaccine. For validation, immunogenicity, allergenicity and physiochemical analysis were conducted. The designed vaccine is likely antigenic in nature and produced robust and substantial interactions with Toll-like receptors (TLR-2, 4, 5, and 9). The vaccine developed was also subjected to an in silico cloning and immune response prediction model, which verified its efficiency of expression and the immune system provoking response. These analyses indicate that the suggested vaccine may produce particular immune responses against H. pylori, but laboratory validation is needed to verify the safety and immunogenicity status of the suggested vaccine design.


Assuntos
Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Helicobacter pylori/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Sequência de Aminoácidos , Vacinas Bacterianas/imunologia , Biologia Computacional/métodos , Simulação por Computador , Desenho de Fármacos , Helicobacter pylori/genética , Humanos , Modelos Moleculares , Proteoma , Vacinas/imunologia , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...