Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39339069

RESUMO

The search for adsorbents that are non-toxic and low cost with a high adsorption capacity and excellent recyclability is a priority to determine the way to reduce the serious environmental impacts caused by the discharge of effluents loaded with heavy metals. Bacterial cellulose (BC) biomass has functional groups such as hydroxyl and carbonyl groups that play a crucial role in making this cellulose so efficient at removing contaminants present in water through cation exchange. This research aims to develop an experimental process for the adsorption, elution, and reuse of bacterial cellulose biomass in treating water contaminated with Cr (VI). SEM images and the kinetics behavior were analyzed with pseudo-first- and pseudo-second-order models together with isothermal analysis after each elution and reuse process. The adsorption behavior was in excellent agreement with the Langmuir model along with its elution and reuse; the adsorption capacity was up to 225 mg/g, adding all the elution processes. This study presents a novel approach to the preparation of biomass capable of retaining Cr (VI) with an excellent adsorption capacity and high stability. This method eliminates the need for chemical agents, which would otherwise be difficult to implement due to their costs. The viability of this approach for the field of industrial wastewater treatment is demonstrated.

3.
Sci Rep ; 14(1): 11068, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744892

RESUMO

Colombia's continuous contamination of water resources and the low alternatives to produce biofuels have affected the fulfillment of the objectives of sustainable development, deteriorating the environment and affecting the economic productivity of this country. Due to this reality, projects on environmental and economic sustainability, phytoremediation, and the production of biofuels such as ethanol and hydrogen were combined. The objective of this article was to design and develop a sustainable system for wastewater treatment and the generation of biofuels based on the biomass of the aquatic plant Eichhornia crassipes. A system that simulates an artificial wetland with live E. crassipes plants was designed and developed, removing organic matter contaminants; subsequently, and continuing the sustainability project, bioreactors were designed, adapted, and started up to produce bioethanol and biohydrogen with the hydrolyzed biomass used in the phytoremediation process, generating around 12 g/L of bioethanol and around 81 ml H2/g. The proposed research strategy suggests combining two sustainable methods, bioremediation and biofuel production, to preserve the natural beauty of water systems and their surroundings.


Assuntos
Biodegradação Ambiental , Biocombustíveis , Biomassa , Eichhornia , Águas Residuárias , Eichhornia/metabolismo , Águas Residuárias/química , Purificação da Água/métodos , Etanol/metabolismo , Reatores Biológicos , Hidrogênio/metabolismo
4.
Polymers (Basel) ; 16(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611150

RESUMO

Water scarcity is a significant global issue caused by the prolonged disregard and unsustainable management of this essential resource by both public and private bodies. The dependence on fossil fuels further exacerbates society's bleak environmental conditions. Therefore, it is crucial to explore alternative solutions to preserve our nation's water resources properly and promote the production of biofuels. Research into the utilization of E. crassipes to remove heavy metals and generate biofuels is extensive. The combination of these two lines of inquiry presents an excellent opportunity to achieve sustainable development goals. This study aims to develop a sustainable wastewater treatment system and generate biohydrogen from dry, pulverized E. crassipes biomass. A treatment system was implemented to treat 1 L of industrial waste. The interconnected compartment system was built by utilizing recycled PET bottles to generate biohydrogen by reusing the feedstock for the treatment process. The production of biological hydrogen through dark fermentation, using biomass containing heavy metals as a biohydrogen source, was studied. Cr (VI) and Pb (II) levels had a low impact on hydrogen production. The uncontaminated biomass of E. crassipes displayed a significantly higher hydrogen yield (81.7 mL H2/g glucose). The presence of Cr (IV) in E. crassipes leads to a decrease in biohydrogen yield by 14%, and the presence of Pb (II) in E. crassipes leads to a decrease in biohydrogen yield of 26%. This work proposes a strategy that utilizes green technologies to recover and utilize contaminated water. Additionally, it enables the production of bioenergy with high efficiency, indirectly reducing greenhouse gases. This strategy aligns with international programs for the development of a circular economy.

5.
Polymers (Basel) ; 15(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37836045

RESUMO

There are numerous studies on water care methods featured in various academic and research journals around the world. One research area is cellulose residue coupled with continuous systems to identify which are more efficient and easier to install. Investigations have included mathematical design models that provide methods for developing and commissioning industrial wastewater treatment plants, but nothing is provided on how to size and start these treatment systems. Therefore, the objective is to determine recent advances in the treatment of industrial wastewater from different celluloses in continuous systems. The dynamic behavior of the research results with cellulose biomasses was analyzed with the mass balance model and extra-particle and intraparticle dispersion, evaluating adsorption capacities, design variables, and removal constants, and making a size contribution for each cellulose analyzed using adsorption capacities. A mathematical model was also developed that feeds on cellulose reuse, determining new adsorption capacities and concluding that the implementation of cellulose waste treatment systems has a high feasibility due to low costs and high adsorption capacities. Furthermore, with the design equations, the companies themselves could design their systems for the treatment of water contaminated with heavy metals with cellulose.

6.
Sci Rep ; 13(1): 1970, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737449

RESUMO

Water care is an imperative duty in industries with effluents loaded with pollutants such as heavy metals, especially chromium (VI), extremely dangerous for humans and the environment. One way of treating water is possible through a continuous system with dry and crushed vegetable biomass of cellulose xanthogenate because it can adsorb heavy metals, especially due to its low production costs. Through continuous systems and with the waste of PET plastics, it is possible to develop a water treatment process adapting this system and biomass. The objective of this research is the development of a treatment for water contaminated with Cr (VI) using cellulose xanthogenate from E. crassipes on a pilot scale. Where a mass balance conducted to determine the adsorption capacity of this heavy metal, corroborating it through the Thomas model. The treatment process eliminated around 95% of Cr (VI) present in the water, in addition, biomass reuse cycles carried out, which maintained a considerable adsorption capacity in all the cycles conducted through EDTA reagent.

7.
Sci Rep ; 11(1): 9326, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927230

RESUMO

The use of cellulose materials for the adsorption of heavy metals has increased in favorable results to comply with the removal of these contaminants from water, such as the case of Chromium (VI), being one of the most dangerous heavy metals for the environment and human health. The objective of this research is to design and develop a biotreatment with dry and crushed biomass of E. crassipes for the continuous treatment of Chromium (VI), determining through mathematical modeling the Fick diffusion constant (Kf), based on this constant Fick will establish the performance of the biotreatment and the intraparticle diffusion constant (Ks). The diffusion speed (Kf) of the biomass of E. crassipes chemisorbing Cr (VI) of 0.30 cm/min, also it got the constant of the adsorption capacities (Ks) was 0.0198 s. With (Kf) it can design the treatment systems according to caudal or load greatly contaminated, calibrating the parameters how caudal, volume, or area of contact of the system of treatment. Also with (Ks) will be possible the design and modeling of a treatment system to improve the capacity of adsorptions calibrating the density of the particle and the density of the contact bed of the treatment system. Based on Fick's second law, an equation was designed to determine the reliability and performance of water treatment systems through the E. crassipes plant.

8.
Environ Monit Assess ; 192(2): 141, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31982980

RESUMO

Cellulose emerges as an alternative for the treatment of water contaminated with heavy metals due to its abundant biomass and its proven potential in the adsorption of pollutants. The aquatic plant Eichhornia crassipes is an option as raw material in the contribution of cellulose due to its enormous presence in contaminated wetlands, rivers, and lakes. The efficiency in the removal of heavy metals is due to the cation exchange between the hydroxyl groups and carboxyl groups present in the biomass of E. crassipes with heavy metals. Through different chemical and physical transformations of the biomass of E. crassipesThe objective of this review article is to provide a discussion on the different mechanisms of adsorption of the biomass of E. crassipes to retain heavy metals and dyes. In addition to estimating equilibrium, times through kinetic models of adsorption and maximum capacities of this biomass through equilibrium models with isotherms, in order to design one biofilter for treatment systems on a larger scale represented the effluents of a real industry.


Assuntos
Eichhornia , Metais Pesados , Poluentes Químicos da Água , Adsorção , Eichhornia/química , Monitoramento Ambiental , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água
9.
Environ Monit Assess ; 191(4): 221, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30877391

RESUMO

Eichhornia crassipes is considered a problem in different aquatic ecosystems, due to its abundance it could become a solution to design and build economic and efficient treatment plants, and especially for the production of biofuels such as bioethanol. The objective of this research is to design and implement a process of sustainable development between phytoremediation and the production of bioethanol with E. crassipes, evaluating the incidence of chromium adhered to the biomass of this plant in the production of bioethanol. A system was installed to evaluate the phytoremediation with E. crassipes with water loaded with chromium, determining the effectiveness of this plant to eliminate this heavy metal even if it is alive in a body of water. After this process, we proceeded to take the biomass loaded with chromium to the bioreactors to evaluate the production of bioethanol, evaluating three types of biomass, one without chromium adhered and the other two with chromium adhered to the structure of its plant. There was a 25% decrease in the ethanol production of E. crassipes due to the presence of chromium. Concluding that the biomass of E. crassipes could be used totally for phytoremediation processes of waters contaminated with heavy metals and later use this biomass for the production of bioethanol, finding a sustainable system to be used on a larger scale.


Assuntos
Biodegradação Ambiental , Eichhornia/fisiologia , Metais Pesados/metabolismo , Poluentes Químicos da Água/metabolismo , Biocombustíveis , Biomassa , Cromo , Monitoramento Ambiental , Etanol/metabolismo , Metais Pesados/análise , Desenvolvimento Sustentável , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA