Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37504440

RESUMO

Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer and the third leading cause of cancer-related deaths worldwide. A substantial body of literature supports the crucial role of vitamin D (VD) in the etiology, progression, prognosis, and treatment of cancer. Recent clinical studies have found an inverse correlation between CRC incidence and serum VD levels. However, the low water solubility of VD and its anticarcinogenic activity at supraphysiological plasma levels, which causes hypercalcemia, required carrier systems. Carbon-based nanomaterials are excellent eco-friendly candidates, with exceptional chemical resistance, efficient mechanical properties, and negligible weight. Furthermore, composite aerogels manufactured from these nanomaterials have gained interest due to their extensive surface areas and porous structures, which make them suitable for delivering drugs. Our research aimed to study the development of composite aerogels loaded with VD by utilizing carbon nanofibers (CNFs) in an aerogel matrix provided to colon cancer cells. For this purpose, Aero1 as a drug delivery system was first prepared and characterized using XRD, FTIR, and SEM methods. Biochemical methods were employed to evaluate the antiproliferative, apoptotic, and anti-migratory effects on colon cancer cells. FTIR and XRD measurements confirmed the production of aerogels. SEM analysis revealed that aerogels have a non-uniform surface. The findings showed that aerogels can effectively deliver VD to the colon cancer cells, while also inhibiting cancer cell proliferation and migration. This research suggests that the Aero1 drug delivery system could be a valuable tool in the fight against colon cancer and other health issues.

2.
Langmuir ; 38(17): 5040-5051, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34096296

RESUMO

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease that is increasingly common all over the world with a high risk of progressive hyperglycemia and high microvascular and macrovascular complications. The currently used drugs in the treatment of T2DM have insufficient glucose control and can carry detrimental side effects. Several drug delivery systems have been investigated to decrease the side effects and frequency of dosage, and also to increase the effect of oral antidiabetic drugs. In recent years, the use of microbubbles in biomedical applications has greatly increased, and research into microactive carrier bubbles continues to generate more and more clinical interest. In this study, various monodisperse polymer nanoparticles at different concentrations were produced by bursting microbubbles generated using a T-junction microfluidic device. Morphological analysis by scanning electron microscopy, molecular interactions between the components by FTIR, drug release by UV spectroscopy, and physical analysis such as surface tension and viscosity measurement were carried out for the particles generated and solutions used. The microbubbles and nanoparticles had a smooth outer surface. When the microbubbles/nanoparticles were compared, it was observed that they were optimized with 0.3 wt % poly(vinyl alcohol) (PVA) solution, 40 kPa pressure, and a 110 µL/min flow rate, thus the diameters of the bubbles and particles were 100 ± 10 µm and 70 ± 5 nm, respectively. Metformin was successfully loaded into the nanoparticles in these optimized concentrations and characteristics, and no drug crystals and clusters were seen on the surface. Metformin was released in a controlled manner at pH 1.2 for 60 min and at pH 7.4 for 240 min. The process and structures generated offer great potential for the treatment of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Nanopartículas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Metformina/química , Metformina/uso terapêutico , Microbolhas , Nanopartículas/química , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA