Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 38(11): 3028-35, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15224731

RESUMO

Two analytical methods were developed and refined for the detection and quantitation of two groups of endocrine-disrupting chemicals (EDCs) in the liquid matrixes of two pilot-scale municipal wastewater treatment plants. The targeted compounds are seven sex hormones (estradiol, ethinylestradiol, estrone, estriol, testosterone, progesterone, and androstenedione), a group of nonionic surfactants (nonylphenol polyethoxylates), and their biodegradation byproducts nonylphenol and nonylphenol ethoxylates with one, two, and three ethoxylates. Solid phase extraction using C-18 for steroids and graphitized carbon black for the surfactants were used for extraction. HPLC-DAD and GC/MS were used for quantification. Each of the two 20 L/h pilot-scale plants consists of a primary settling tank followed by a three-stage aeration tank and final clarification. The primary and the waste-activated sludge are digested anaerobically in one plant and aerobically in the other. The pilot plants are fed with a complex synthetic wastewater spiked with the EDCs. Once steady state was reached, liquid samples were collected from four sampling points to obtain the profile for all EDCs along the treatment system. Complete removal from the aqueous phase was obtained for testosterone, androstenedione, and progesterone. Removals for nonylphenol polyethoxylates, estradiol, estrone, and ethinylestradiol from the aqueous phase exceeded 96%, 94%, 52%, and 50%, respectively. Levels of E3 in the liquid phase were low, and no clear conclusions could be drawn concerning its removal.


Assuntos
Detergentes/análise , Etilenoglicóis/análise , Hormônios Esteroides Gonadais/análise , Esgotos/química , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas
2.
Environ Toxicol Chem ; 23(2): 245-51, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14982368

RESUMO

The performance of remedial treatments is typically evaluated by measuring the concentration of specific chemicals. By adding toxicity bioassays to treatment evaluations, a fuller understanding of treatment performance is obtained. The solid phase Microtox assay is a useful tool in characterizing the toxicity of contaminated soils and sediments. This study compares the performance of the solid phase and saline extract Microtox assays in two experiments using two soils contaminated with polycyclic aromatic hydrocarbons (PAHs). The first experiment, conducted to refine the solid phase assay procedures, evaluated sample holding times, sample replication, and reference toxicant controls. The effective concentration reducing light emission by 50% (EC50) of four samples was measured with eight replicates of each sample. Samples were stored for as long as two weeks without showing substantial changes in toxicity. For future studies, three replicates of each sample are recommended because that degree of replication yielded a statistical power of more than 95% in most samples. Phenol was a reliable reference toxicant with a mean EC50 of 21.76 and a 95% confidence interval of 15.6 to 27.9 mg/L. In a second experiment, the solid phase Microtox assay was compared to saline extract Microtox assays with mixing times ranging from 5 min to 16 h. The solid phase assay was more sensitive yielding EC50s 7 to 50 times lower than the extract EC50s. In addition, the saline extract assays displayed results that varied for mixing times of less than 2 h. Based on these two experiments, the solid phase Microtox test has proved to be a useful assay for measuring the toxicity of PAH-contaminated soils.


Assuntos
Bioensaio/métodos , Poluentes Ambientais/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Solo/análise , Cromatografia Gasosa , Concentração de Íons de Hidrogênio , Minnesota , Sensibilidade e Especificidade , Vibrio/efeitos dos fármacos , Vibrio/metabolismo
3.
J Contam Hydrol ; 58(3-4): 209-20, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12400833

RESUMO

A numerical and experimental study of transport phenomena underlying anaerobic bioventing (ABV) is presented. Understanding oxygen exclusion patterns in vadose zone environments is important in designing an ABV process for bioremediation of soil contaminated with chlorinated solvents. In particular, the establishment of an anaerobic zone of influence by nitrogen injection in the vadose zone is investigated. Oxygen exclusion experiments are performed in a pilot scale flow cell (2 x 1.1 x 0.1 m) using different venting flows and two different outflow boundary conditions (open and partially covered). Injection gas velocities are varied from 0.25 x 10(-3) to 1.0 x 10(-3) cm/s and are correlated with the ABV radius of influence. Numerical simulations are used to predict the collected experimental data. In general, reasonable agreement is found between observed and predicted oxygen concentrations. Use of impervious covers can significantly reduce the volume of forcing gas used, where an increase in oxygen exclusion efficiency is consistent with a decrease in the outflow area above the injection well.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos Clorados/química , Modelos Químicos , Oxigênio/química , Poluentes do Solo , Simulação por Computador , Nitrogênio , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...