Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biointerphases ; 18(2): 021001, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898958

RESUMO

Tumor invasion is likely driven by the product of intrinsic and extrinsic stresses, reduced intercellular adhesion, and reciprocal interactions between the cancer cells and the extracellular matrix (ECM). The ECM is a dynamic material system that is continuously evolving with the tumor microenvironment. Although it is widely reported that cancer cells degrade the ECM to create paths for migration using membrane-bound and soluble enzymes, other nonenzymatic mechanisms of invasion are less studied and not clearly understood. To explore tumor invasion that is independent of enzymatic degradation, we have created an open three-dimensional (3D) microchannel network using a novel bioconjugated liquid-like solid (LLS) medium to mimic both the tortuosity and the permeability of a loose capillary-like network. The LLS is made from an ensemble of soft granular microgels, which provides an accessible platform to investigate the 3D invasion of glioblastoma (GBM) tumor spheroids using in situ scanning confocal microscopy. The surface conjugation of the LLS microgels with type 1 collagen (COL1-LLS) enables cell adhesion and migration. In this model, invasive fronts of the GBM microtumor protruded into the proximal interstitial space and may have locally reorganized the surrounding COL1-LLS. Characterization of the invasive paths revealed a super-diffusive behavior of these fronts. Numerical simulations suggest that the interstitial space guided tumor invasion by restricting available paths, and this physical restriction is responsible for the super-diffusive behavior. This study also presents evidence that cancer cells utilize anchorage-dependent migration to explore their surroundings, and geometrical cues guide 3D tumor invasion along the accessible paths independent of proteolytic ability.


Assuntos
Microgéis , Humanos , Movimento Celular , Invasividade Neoplásica/patologia , Matriz Extracelular/metabolismo , Colágeno Tipo I , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Vet Immunol Immunopathol ; 216: 109912, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31446208

RESUMO

Melanoma in humans and canines is an aggressive and highly metastatic cancer. The mucosal forms in both species share genetic and histopathologic features, making dogs a valuable spontaneous disease animal model. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells of myeloid origin with immunosuppressive capabilities, which are increased in many human cancers and contribute to tumor immune evasion. They are a possible target to improve immunotherapy outcomes. Current information regarding MDSCs in canines is minimal, limiting their use as translational model for the study of MDSCs. The objective of this study was to characterize major MDSCs subsets (monocytic and polymorphonuclear) and the cytokines granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 10 (IL-10) and monocyte chemoattractant protein-1 (MCP-1) in canines with malignant melanoma and to evaluate changes in MDSCs and the cytokines over time in response to a GD3-based active immunotherapy. Whole blood and serum collected from 30 healthy controls and 33 patients enrolled in the University of Florida melanoma vaccine trial were analyzed by flow cytometry with canine specific CD11b, MHCII and anti-human CD14 antibodies to assess ostensibly polymorphonuclear-MDSC (CD11b+ MHCII- CD14-) and monocytic-MDSC (CD11b+ MHCII- CD14+) subsets. IL-10, MCP-1 and both MDSCs subsets were significantly elevated in melanoma dogs versus controls. Both MDSCs subsets decreased significantly following GD3-based immunotherapy administration but no significant changes in cytokines were seen over time. To our knowledge, this is the first report documenting increased monocytic-MDSCs in canine melanoma. This is consistent with human malignant melanoma data, supporting dogs as a valuable model for therapeutic intervention studies.


Assuntos
Quimiocina CCL2/metabolismo , Doenças do Cão/terapia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-10/metabolismo , Melanoma/veterinária , Células Supressoras Mieloides/fisiologia , Animais , Quimiocina CCL2/genética , Doenças do Cão/metabolismo , Cães , Feminino , Gangliosídeos/administração & dosagem , Gangliosídeos/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Imunoterapia , Interleucina-10/genética , Masculino , Melanoma/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...