Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1114935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860899

RESUMO

Sorghum is the fifth most important cereal crop. Here we performed molecular genetic analyses of the 'SUGARY FETERITA' (SUF) variety, which shows typical sugary endosperm traits (e.g., wrinkled seeds, accumulation of soluble sugars, and distorted starch). Positional mapping indicated that the corresponding gene was located on the long arm of chromosome 7. Within the candidate region of 3.4 Mb, a sorghum ortholog for maize Su1 (SbSu) encoding a starch debranching enzyme ISA1 was found. Sequencing analysis of SbSu in SUF uncovered nonsynonymous single nucleotide polymorphisms (SNPs) in the coding region, containing substitutions of highly conserved amino acids. Complementation of the rice sugary-1 (osisa1) mutant line with the SbSu gene recovered the sugary endosperm phenotype. Additionally, analyzing mutants obtained from an EMS-induced mutant panel revealed novel alleles with phenotypes showing less severe wrinkles and higher Brix scores. These results suggested that SbSu was the corresponding gene for the sugary endosperm. Expression profiles of starch synthesis genes during the grain-filling stage demonstrated that a loss-of-function of SbSu affects the expression of most starch synthesis genes and revealed the fine-tuned gene regulation in the starch synthetic pathway in sorghum. Haplotype analysis using 187 diverse accessions from a sorghum panel revealed the haplotype of SUF showing severe phenotype had not been used among the landraces and modern varieties. Thus, weak alleles (showing sweet and less severe wrinkles), such as in the abovementioned EMS-induced mutants, are more valuable for grain sorghum breeding. Our study suggests that more moderate alleles (e.g. produced by genome editing) should be beneficial for improving grain sorghum.

2.
Microb Cell Fact ; 20(1): 228, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34949178

RESUMO

BACKGROUND: Bio-based aromatic compounds are of great interest to the industry, as commercial production of aromatic compounds depends exclusively on the unsustainable use of fossil resources or extraction from plant resources. γ-amino acid 3-amino-4-hydroxybenzoic acid (3,4-AHBA) serves as a precursor for thermostable bioplastics. RESULTS: Under aerobic conditions, a recombinant Corynebacterium glutamicum strain KT01 expressing griH and griI genes derived from Streptomyces griseus produced 3,4-AHBA with large amounts of amino acids as by-products. The specific productivity of 3,4-AHBA increased with decreasing levels of dissolved oxygen (DO) and was eightfold higher under oxygen limitation (DO = 0 ppm) than under aerobic conditions (DO ≥ 2.6 ppm). Metabolic profiles during 3,4-AHBA production were compared at three different DO levels (0, 2.6, and 5.3 ppm) using the DO-stat method. Results of the metabolome analysis revealed metabolic shifts in both the central metabolic pathway and amino acid metabolism at a DO of < 33% saturated oxygen. Based on this metabolome analysis, metabolic pathways were rationally designed for oxygen limitation. An ldh deletion mutant, with the loss of lactate dehydrogenase, exhibited 3.7-fold higher specific productivity of 3,4-AHBA at DO = 0 ppm as compared to the parent strain KT01 and produced 5.6 g/L 3,4-AHBA in a glucose fed-batch culture. CONCLUSIONS: Our results revealed changes in the metabolic state in response to DO concentration and provided insights into oxygen supply during fermentation and the rational design of metabolic pathways for improved production of related amino acids and their derivatives.


Assuntos
Aminobenzoatos/metabolismo , Corynebacterium glutamicum/metabolismo , Hidroxibenzoatos/metabolismo , Engenharia Metabólica/métodos , Oxigênio/metabolismo , Aminoácidos/metabolismo , Aminoácidos Acídicos/genética , Aminoácidos Acídicos/metabolismo , Proteínas de Bactérias/genética , Técnicas de Cultura Celular por Lotes , Corynebacterium glutamicum/genética , Fermentação , Glucose/metabolismo , L-Lactato Desidrogenase/genética , Redes e Vias Metabólicas , Metaboloma , Deleção de Sequência
3.
Sci Rep ; 11(1): 4532, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633216

RESUMO

Heterosis helps increase the biomass of many crops; however, while models for its mechanisms have been proposed, it is not yet fully understood. Here, we use a QTL analysis of the progeny of a high-biomass sorghum F1 hybrid to examine heterosis. Five QTLs were identified for culm length and were explained using the dominance model. Five resultant homozygous dominant alleles were used to develop pyramided lines, which produced biomasses like the original F1 line. Cloning of one of the uncharacterised genes (Dw7a) revealed that it encoded a MYB transcription factor, that was not yet proactively used in modern breeding, suggesting that combining classic dw1or dw3, and new (dw7a) genes is an important breeding strategy. In conclusion, heterosis is explained in this situation by the dominance model and a combination of genes that balance the shortness and early flowering of the parents, to produce F1 seed yields.


Assuntos
Estudos de Associação Genética , Vigor Híbrido/genética , Modelos Genéticos , Locos de Características Quantitativas , Característica Quantitativa Herdável , Sorghum/genética , Alelos , Mapeamento Cromossômico , Clonagem Molecular , Expressão Gênica , Genes Dominantes , Genes de Plantas , Hibridização Genética , Japão , Melhoramento Vegetal
4.
Microbiol Resour Announc ; 9(32)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32763926

RESUMO

We determined the complete and draft genome sequences of two strains of Corynebacterium glutamicum and revealed their genomic islands (GEIs). The two strains, ATCC 21799 and ATCC 31831, were found to have 3,079 and 3,109 coding sequences, respectively, with 13 GEIs each not present in the reference strain, ATCC 13032.

5.
Proc Natl Acad Sci U S A ; 115(37): E8783-E8792, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150370

RESUMO

Pith parenchyma cells store water in various plant organs. These cells are especially important for producing sugar and ethanol from the sugar juice of grass stems. In many plants, the death of pith parenchyma cells reduces their stem water content. Previous studies proposed that a hypothetical D gene might be responsible for the death of stem pith parenchyma cells in Sorghum bicolor, a promising energy grass, although its identity and molecular function are unknown. Here, we identify the D gene and note that it is located on chromosome 6 in agreement with previous predictions. Sorghum varieties with a functional D allele had stems enriched with dry, dead pith parenchyma cells, whereas those with each of six independent nonfunctional D alleles had stems enriched with juicy, living pith parenchyma cells. D expression was spatiotemporally coupled with the appearance of dead, air-filled pith parenchyma cells in sorghum stems. Among D homologs that are present in flowering plants, Arabidopsis ANAC074 also is required for the death of stem pith parenchyma cells. D and ANAC074 encode previously uncharacterized NAC transcription factors and are sufficient to ectopically induce programmed death of Arabidopsis culture cells via the activation of autolytic enzymes. Taken together, these results indicate that D and its Arabidopsis ortholog, ANAC074, are master transcriptional switches that induce programmed death of stem pith parenchyma cells. Thus, targeting the D gene will provide an approach to breeding crops for sugar and ethanol production.


Assuntos
Apoptose/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Caules de Planta/genética , Sorghum/genética , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Carboidratos/análise , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Geografia , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/metabolismo , Homologia de Sequência do Ácido Nucleico , Sorghum/citologia , Sorghum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Bioresour Technol ; 265: 542-547, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30017362

RESUMO

The aim of this study was to construct a cost-effective method for repeated bioethanol production using membrane (ultrafiltration permeation and nanofiltration concentration)-concentrated sweet sorghum juice by using flocculent Saccharomyces cerevisiae F118 strain. With low initial dry cell concentrations at around 0.28-0.35 g L-1, the S. cerevisiae F118 strain provided an ethanol titer of 86.19 ±â€¯1.15 g L-1 (theoretical ethanol yield of 70.77%), which was higher than the non-flocculent S. cerevisiae BY4741 strain at 33.92 ±â€¯0.99 g L-1 after 24 h fermentation. This result was correlated with higher gene expressions of the sucrose-hydrolysing enzyme invertase, sugar phosphorylation, and pyruvate-to-ethanol pathways in the F118 strain compared with the BY4741 strain. Sequential fed-batch fermentation was conducted, and the F118 strain was easily separated from the fermentation broth via the formation of flocs and sediment. After the 5th cycle of fermentation with the F118 strain, the ethanol concentration reached 100.37 g L-1.


Assuntos
Etanol/química , Fermentação , Sorghum , Grão Comestível , Floculação , Saccharomyces cerevisiae
7.
Bioresour Technol ; 252: 157-164, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29324275

RESUMO

We investigated the use of low concentrations of butanol (<40%, all v/v) as an organosolv pretreatment to fractionate lignocellulosic biomass into cellulose, hemicellulose, and lignin. The pretreatment conditions were optimized for sorghum bagasse by focusing on four parameters: butanol concentration, sulfuric acid concentration, pretreatment temperature, and pretreatment time. A butanol concentration of 25% or higher together with 0.5% or higher acid was effective for removing lignin while retaining most of the cellulose in the solid fraction. The highest cellulose (84.9%) and low lignin (15.3%) content were obtained after pretreatment at 200 °C for 60 min. Thus, pretreatment comprising 25% butanol, 0.5% acid, 200 °C, and 60 min process time was considered optimal. Enzymatic saccharification and fermentation by Saccharomyces cerevisiae produced 61.9 g/L ethanol from 200 g/L solid fraction obtained following pretreatment, and 10.2 g/L ethanol was obtained from the liquid fraction by xylose-utilizing S. cerevisiae following membrane nanofiltration to remove butanol.


Assuntos
Celulose , Saccharomyces cerevisiae , Sorghum , 1-Butanol , Etanol , Fermentação , Hidrólise , Lignina
8.
Biosci Biotechnol Biochem ; 81(8): 1650-1656, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28622080

RESUMO

Bio-refinery processes require use of the most suitable lignocellulosic biomass for enzymatic saccharification and microbial fermentation. Glucose yield from biomass solid fractions obtained after dilute sulfuric acid (1%) pretreatment (at 180 °C) was investigated using 14, 8, and 16 varieties of rice, wheat, and sorghum, respectively. Biomass solid fractions of each crop showed similar cellulose content. However, glucose yield after enzymatic hydrolysis (cellulase loading at 6.6 filter paper unit/g-biomass) was different among the varieties of each crop, indicating genotypic differences for rice, wheat, and sorghum. Nuclear magnetic resonance method revealed that the high residual level of lignin aromatic regions decreased glucose yield from solid fraction of sorghum.


Assuntos
Celulase/metabolismo , Glucose/biossíntese , Lignina/metabolismo , Ácidos Sulfúricos/química , Biomassa , Celulase/química , Fermentação , Hidrólise , Lignina/química , Oryza/química , Sorghum/química , Especificidade da Espécie , Triticum/química
9.
Appl Microbiol Biotechnol ; 101(15): 6007-6014, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28488116

RESUMO

The juice from sweet sorghum cultivar SIL-05 (harvested at physiological maturity) was extracted, and the component sucrose and reducing sugars (such as glucose and fructose) were subjected to a membrane separation process to purify the sucrose for subsequent sugar refining and to obtain a feedstock for repeated bioethanol production. Nanofiltration (NF) of an ultrafiltration (UF) permeate using an NTR-7450 membrane (Nitto Denko Corporation, Osaka, Japan) concentrated the juice and produced a sucrose-rich fraction (143.2 g L-1 sucrose, 8.5 g L-1 glucose, and 4.5 g L-1 fructose). In addition, the above NF permeate was concentrated using an ESNA3 NF membrane to provide concentrated permeated sugars (227.9 g L-1) and capture various amino acids in the juice, enabling subsequent ethanol fermentation without the addition of an exogenous nitrogen source. Sequential batch fermentation using the ESNA3 membrane concentrate provided an ethanol titer and theoretical ethanol yield of 102.5-109.5 g L-1 and 84.4-89.6%, respectively, throughout the five-cycle batch fermentation by Saccharomyces cerevisiae BY4741. Our results demonstrate that a membrane process using UF and two types of NF membranes has the potential to allow sucrose purification and repeated bioethanol production.


Assuntos
Grão Comestível/metabolismo , Etanol/metabolismo , Sorghum/metabolismo , Sacarose/isolamento & purificação , Sacarose/metabolismo , Etanol/análise , Fermentação , Glucose/metabolismo , Japão , Membranas Artificiais , Nanotecnologia , Nitrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Sorghum/química , Sacarose/química , Ultrafiltração
10.
DNA Res ; 24(4): 397-405, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28498906

RESUMO

Recent availability of large-scale genomic resources enables us to conduct so called genome-wide association studies (GWAS) and genomic prediction (GP) studies, particularly with next-generation sequencing (NGS) data. The effectiveness of GWAS and GP depends on not only their mathematical models, but the quality and quantity of variants employed in the analysis. In NGS single nucleotide polymorphism (SNP) calling, conventional tools ideally require more reads for higher SNP sensitivity and accuracy. In this study, we aimed to develop a tool, Heap, that enables robustly sensitive and accurate calling of SNPs, particularly with a low coverage NGS data, which must be aligned to the reference genome sequences in advance. To reduce false positive SNPs, Heap determines genotypes and calls SNPs at each site except for sites at the both ends of reads or containing a minor allele supported by only one read. Performance comparison with existing tools showed that Heap achieved the highest F-scores with low coverage (7X) restriction-site associated DNA sequencing reads of sorghum and rice individuals. This will facilitate cost-effective GWAS and GP studies in this NGS era. Code and documentation of Heap are freely available from https://github.com/meiji-bioinf/heap (29 March 2017, date last accessed) and our web site (http://bioinf.mind.meiji.ac.jp/lab/en/tools.html (29 March 2017, date last accessed)).


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Software , Genoma de Planta , Oryza/genética , Sorghum/genética
11.
Sci Rep ; 7(1): 126, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28273925

RESUMO

Semi-dwarf traits have been widely introgressed into cereal crops to improve lodging resistance. In sorghum (Sorghum bicolor L. Moench), four major unlinked dwarfing genes, Dw1-Dw4, have been introduced to reduce plant height, and among them, Dw3 and Dw1 have been cloned. Dw3 encodes a gene involved in auxin transport, whereas, Dw1 was recently isolated and identified as a gene encoding a protein of unknown function. In this study, we show that DW1 is a novel component of brassinosteroid (BR) signaling. Sorghum possessing the mutated allele of Dw1 (dw1), showed similar phenotypes to rice BR-deficient mutants, such as reduced lamina joint bending, attenuated skotomorphogenesis, and insensitivity against feedback regulation of BR-related genes. Furthermore, DW1 interacted with a negative regulator of BR signaling, BRASSINOSTEROID INSENSITIVE 2 (BIN2), and inhibited its nuclear localization, indicating that DW1 positively regulates BR signaling by inhibiting the function of BIN2. In contrast to rice and wheat breeding which used gibberellin (GA) deficiency to reduce plant height, sorghum breeding modified auxin and BR signaling. This difference may result from GA deficiency in rice and wheat does not cause deleterious side effects on plant morphology, whereas in sorghum it leads to abnormal culm bending.

12.
Planta ; 246(1): 61-74, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28357539

RESUMO

MAIN CONCLUSION: The screening of rice mutants with improved cellulose to glucose saccharification efficiency (SE) identifies reduced xylan and/or ferulic acid, and a qualitative change of lignin to impact SE. To ensure the availability of sustainable energy, considerable effort is underway to utilize lignocellulosic plant biomass as feedstock for the production of biofuels. However, the high cost of degrading plant cell wall components to fermentable sugars (saccharification) has been problematic. One way to overcome this barrier is to develop plants possessing cell walls that are amenable to saccharification. In this study, we aimed to identify new molecular factors that influence saccharification efficiency (SE) in rice. By screening 22 rice mutants, we identified two lines, 122 and 108, with improved SE. Reduced xylan and ferulic acid within the cell wall of line 122 were probable reasons of improved SE. Line 108 showed reduced levels of thioglycolic-released lignin; however, the amount of Klason lignin was comparable to the wild-type, indicating that structural changes had occurred in the 108 lignin polymer which resulted in improved SE. Positional cloning revealed that the genes responsible for improved SE in 122 and 108 were rice CONSTITUTIVE PHOTOMORPHOGENIC 1 (OsCOP1) and GOLD HULL AND INTERNODE 1 (GH1), respectively, which have not been previously reported to influence SE. The screening of mutants for improved SE is an efficient approach to identify novel genes that affect SE, which is relevant in the development of crops as biofuel sources.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Biomassa , Celulose/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
13.
Sci Rep ; 6: 28366, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27329702

RESUMO

Semi-dwarfing genes have contributed to enhanced lodging resistance, resulting in increased crop productivity. In the history of grain sorghum breeding, the spontaneous mutation, dw1 found in Memphis in 1905, was the first widely used semi-dwarfing gene. Here, we report the identification and characterization of Dw1. We performed quantitative trait locus (QTL) analysis and cloning, and revealed that Dw1 encodes a novel uncharacterized protein. Knockdown or T-DNA insertion lines of orthologous genes in rice and Arabidopsis also showed semi-dwarfism similar to that of a nearly isogenic line (NIL) carrying dw1 (NIL-dw1) of sorghum. A histological analysis of the NIL-dw1 revealed that the longitudinal parenchymal cell lengths of the internode were almost the same between NIL-dw1 and wildtype, while the number of cells per internode was significantly reduced in NIL-dw1. NIL-dw1dw3, carrying both dw1 and dw3 (involved in auxin transport), showed a synergistic phenotype. These observations demonstrate that the dw1 reduced the cell proliferation activity in the internodes, and the synergistic effect of dw1 and dw3 contributes to improved lodging resistance and mechanical harvesting.


Assuntos
Clonagem Molecular/métodos , Proteínas de Plantas/genética , Sorghum/crescimento & desenvolvimento , Proliferação de Células , Mapeamento Cromossômico , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Sorghum/genética , Sorghum/metabolismo
14.
Biotechnol Biofuels ; 9: 27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26839590

RESUMO

BACKGROUND: The primary components of lignocellulosic biomass such as sorghum bagasse are cellulose, hemicellulose, and lignin. Each component can be utilized as a sustainable resource for producing biofuels and bio-based products. However, due to their complicated structures, fractionation of lignocellulosic biomass components is required. Organosolv pretreatment is an attractive method for this purpose. However, as organosolv pretreatment uses high concentrations of organic solvents (>50 %), decreasing the concentration necessary for fractionation would help reduce processing costs. In this study, we sought to identify organic solvents capable of efficiently fractionating sorghum bagasse components at low concentrations. RESULTS: Five alcohols (ethanol, 1-propanol, 2-propanol, 1-butanol, and 1-pentanol) were used for organosolv pretreatment of sorghum bagasse at a concentration of 12.5 %. Sulfuric acid (1 %) was used as a catalyst. With 1-butanol and 1-pentanol, three fractions (black liquor, liquid fraction containing xylose, and cellulose-enriched solid fraction) were obtained after pretreatment. Two-dimensional nuclear magnetic resonance analysis revealed that the lignin aromatic components of raw sorghum bagasse were concentrated in the black liquor fraction, although the major lignin side-chain (ß-O-4 linkage) was lost. Pretreatment with 1-butanol or 1-pentanol effectively removed p-coumarate, some guaiacyl, and syringyl. Compared with using no solvent, pretreatment with 1-butanol or 1-pentanol resulted in two-fold greater ethanol production from the solid fraction by Saccharomyces cerevisiae. CONCLUSIONS: Our results revealed that a low concentration (12.5 %) of a highly hydrophobic solvent such as 1-butanol or 1-pentanol can be used to separate the black liquor from the solid and liquid fractions. The efficient delignification and visible separation of the lignin-rich fraction possible with this method simplify the fractionation of sorghum bagasse.

15.
Int Rev Cell Mol Biol ; 321: 221-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26811289

RESUMO

Currently, molecular breeding is regarded as an important tool for the improvement of many crop species. However, in sorghum, recently heralded as an important bioenergy crop, progress in this field has been relatively slow and limited. In this review, we present existing efforts targeted at genetic characterization of sorghum mutants. We also comprehensively review the different attempts made toward the isolation of genes involved in agronomically important traits, including the dissection of some sorghum quantitative trait loci (QTLs). We also explore the current status of the use of transgenic techniques in sorghum, which should be crucial for advancing sorghum molecular breeding. Through this report, we provide a useful benchmark to help assess how much more sorghum genomics and molecular breeding could be improved.


Assuntos
Melhoramento Vegetal , Sorghum/genética , Sorghum/metabolismo , Arabidopsis/genética , Biocombustíveis , Biomassa , Brassinosteroides/química , Cianetos/química , DNA de Plantas/genética , Raios gama , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genômica , Giberelinas/genética , Herbicidas/química , Lignina , Mutagênese , Mutação , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Locos de Características Quantitativas , Transgenes
16.
J Biosci Bioeng ; 121(1): 96-100, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26105794

RESUMO

This study aimed to optimize extracellular glutathione production by a Saccharomyces cerevisiae engineered strain and to concentrate the extracellular glutathione by membrane separation processes, including ultrafiltration (UF) and nanofiltration (NF). Synthetic defined (SD) medium containing 20 g L(-1) glucose was fermented for 48 h; the fermentation liquid was passed through an UF membrane to remove macromolecules. Glutathione in this permeate was concentrated for 48 h to 545.1 ± 33.6 mg L(-1) using the NF membrane; this was a significantly higher concentration than that obtained with yeast extract peptone dextrose (YPD) medium following 96 h NF concentration (217.9 ± 57.4 mg L(-1)). This higher glutathione concentration results from lower cellular growth in SD medium (final OD600 = 6.9 ± 0.1) than in YPD medium (final OD600 = 11.0 ± 0.6) and thus higher production of extracellular glutathione (16.0 ± 1.3 compared to 9.2 ± 2.1 mg L(-1) in YPD medium, respectively). Similar fermentation and membrane processing of sweet sorghum juice containing 20 g L(-1) total sugars provided 240.3 ± 60.6 mg L(-1) glutathione. Increased extracellular production of glutathione by this engineered strain in SD medium and subsequent UF permeation and NF concentration in shortend time may help realize industrial recovery of extracellular glutathione.


Assuntos
Espaço Extracelular/metabolismo , Filtração/métodos , Engenharia Genética , Glutationa/isolamento & purificação , Nanotecnologia/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Reatores Biológicos , Meios de Cultura/química , Fermentação , Glucose/metabolismo , Glutationa/biossíntese , Peptonas/metabolismo , Saccharomyces cerevisiae/citologia , Sorghum/química , Ultrafiltração/métodos
17.
Plant Cell Physiol ; 57(5): 944-52, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26508521

RESUMO

Hybrid vigor (heterosis) has been used as a breeding technique for crop improvement to achieve enhanced biomass production, but the physiological mechanisms underlying heterosis remain poorly understood. In this study, to find a clue to the enhancement of biomass production by heterosis, we systemically evaluated the effect of heterosis on the growth rate and photosynthetic efficiency in sorghum hybrid [Sorghum bicolor (L.) Moench cv. Tentaka] and its parental lines (restorer line and maintainer line). The final biomass of Tentaka was 10-14 times greater than that of the parental lines grown in an experimental field, but the relative growth rate during the vegetative growth stage did not differ. Tentaka exhibited a relatively enlarged leaf area with lower leaf nitrogen content per leaf area (Narea). When the plants were grown hydroponically at different N levels, daily CO2 assimilation per leaf area (A) increased with Narea, and the ratio of A to Narea (N-use efficiency) was higher in the plants grown at low N levels but not different between Tentaka and the parental lines. The relationships between the CO2 assimilation rate, the amounts of photosynthetic enzymes, including ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase and pyruvate phosphate dikinase, Chl and Narea did not differ between Tentaka and the parental lines. Thus, Tentaka tended to exhibit enlargement of leaf area with lower N content, leading to a higher N-use efficiency for CO2 assimilation, but the photosynthetic properties did not differ. The greater biomass in Tentaka was mainly due to the prolonged vegetative growth period.


Assuntos
Dióxido de Carbono/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Sorghum/crescimento & desenvolvimento , Biomassa , Clorofila/metabolismo , Vigor Híbrido , Fosfoenolpiruvato Carboxilase/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulosefosfatos/metabolismo , Sorghum/genética , Sorghum/fisiologia
18.
Bioresour Technol ; 198: 410-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26409852

RESUMO

The production of the bioplastic precursor 3-amino-4-hydroxybenzoic acid (3,4-AHBA) from sweet sorghum juice, which contains amino acids and the fermentable sugars sucrose, glucose and fructose, was assessed to address the limitations of producing bio-based chemicals from renewable feedstocks. Recombinant Corynebacterium glutamicum strain KT01 expressing griH and griI derived from Streptomyces griseus produced 3,4-AHBA from the sweet sorghum juice of cultivar SIL-05 at a final concentration (1.0 g l(-1)) that was 5-fold higher than that from pure sucrose. Fractionation of sweet sorghum juice by nanofiltration (NF) membrane separation (molecular weight cut-off 150) revealed that the NF-concentrated fraction, which contained the highest concentrations of amino acids, increased 3,4-AHBA production, whereas the NF-filtrated fraction inhibited 3,4-AHBA biosynthesis. Amino acid supplementation experiments revealed that leucine specifically enhanced 3,4-AHBA production by strain KT01. Taken together, these results suggest that sweet sorghum juice is a potentially suitable feedstock for 3,4-AHBA production by recombinant C. glutamicum.


Assuntos
Aminobenzoatos/síntese química , Corynebacterium glutamicum/metabolismo , Hidroxibenzoatos/síntese química , Sorghum/química , Aminoácidos/metabolismo
19.
Bioresour Technol ; 186: 351-355, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25857769

RESUMO

Sequential batch fermentation from sweet sorghum juice concentrated by membrane separation (ultrafiltration permeation and nanofiltration concentration) to increase sugar contents, was investigated. Ethanol production at 5th batch fermentation by Saccharomyces cerevisiae BY4741 attained 113.7±3.1 g L(-1) (89.1±2.2% of the theoretical ethanol yield) from 270.0±22.6 g L(-1) sugars, corresponding to 98.7% of ethanol titer attained at the 1st batch fermentation. This titer was comparable to ethanol production of 115.8±0.6 g L(-1) (87.1±2.7% of the theoretical ethanol yield) obtained at 5th batch fermentation with 3 g L(-1) yeast extract and 6 g L(-1) polypeptone. Increase of cell density in the concentrated sweet sorghum juice was observed during sequential batch fermentation, as indicated by increased OD600. Utilization of sweet sorghum juice as the sole source, membrane separation, and S. cerevisiae was a cost-effective process for high ethanol production.


Assuntos
Etanol/isolamento & purificação , Sucos de Frutas e Vegetais/microbiologia , Membranas Artificiais , Saccharomyces cerevisiae/metabolismo , Sorghum/química , Fermentação , Filtração , Sucos de Frutas e Vegetais/análise , Saccharomyces cerevisiae/crescimento & desenvolvimento
20.
Bioresour Technol ; 182: 169-178, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25689311

RESUMO

Dilute acid-pretreated sorghum bagasse, which was predominantly composed of glucan (59%) and xylose (7.2%), was used as a lignocellulosic feedstock for d-phenyllactic acid (PhLA) production by a recombinant Escherichia coli strain expressing phenylpyruvate reductase from Wickerhamia fluorescens. During fermentation with enzymatic hydrolysate of sorghum bagasse as a carbon source, the PhLA yield was reduced by 35% compared to filter paper hydrolysate, and metabolomics analysis revealed that NAD(P)H regeneration and intracellular levels of erythrose-4-phosphate and phosphoenolpyruvate for PhLA biosynthesis markedly reduced. Compared to separate hydrolysis and fermentation (SHF) with sorghum bagasse hydrolysate, simultaneous saccharification and fermentation (SSF) of sorghum bagasse under glucose limitation conditions yielded 4.8-fold more PhLA with less accumulation of eluted components, including p-coumaric acid and aldehydes, which inhibited PhLA fermentation. These results suggest that gradual enzymatic hydrolysis during SSF enhances PhLA production under glucose limitation and reduces the accumulation of fermentation inhibitors, collectively leading to increased PhLA yield.


Assuntos
Biotecnologia/métodos , Lactatos/metabolismo , Sorghum/metabolismo , Celulose/metabolismo , Ácidos Cumáricos/metabolismo , Escherichia coli/metabolismo , Fermentação , Glucose/metabolismo , Hidrólise , Lignina/metabolismo , Metaboloma , Propionatos , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...