Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Immunol ; 14: 1043631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865556

RESUMO

Effective secondary response to antigen is a hallmark of immunological memory. However, the extent of memory CD8 T cell response to secondary boost varies at different times after a primary response. Considering the central role of memory CD8 T cells in long-lived protection against viral infections and tumors, a better understanding of the molecular mechanisms underlying the changing responsiveness of these cells to antigenic challenge would be beneficial. We examined here primed CD8 T cell response to boost in a BALB/c mouse model of intramuscular vaccination by priming with HIV-1 gag-encoding Chimpanzee adenovector, and boosting with HIV-1 gag-encoding Modified Vaccinia virus Ankara. We found that boost was more effective at day(d)100 than at d30 post-prime, as evaluated at d45 post-boost by multi-lymphoid organ assessment of gag-specific CD8 T cell frequency, CD62L-expression (as a guide to memory status) and in vivo killing. RNA-sequencing of splenic gag-primed CD8 T cells at d100 revealed a quiescent, but highly responsive signature, that trended toward a central memory (CD62L+) phenotype. Interestingly, gag-specific CD8 T cell frequency selectively diminished in the blood at d100, relative to the spleen, lymph nodes and bone marrow. These results open the possibility to modify prime/boost intervals to achieve an improved memory CD8 T cell secondary response.


Assuntos
Linfócitos T CD8-Positivos , Imunização Secundária , Células de Memória Imunológica , Vacinas , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Divisão Celular , Camundongos Endogâmicos BALB C , Vacinação , Células de Memória Imunológica/imunologia
4.
PLoS Negl Trop Dis ; 14(7): e0008459, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667913

RESUMO

Rabies, caused by RNA viruses in the Genus Lyssavirus, is the most fatal of all infectious diseases. This neglected zoonosis remains a major public health problem in developing countries, causing the death of an estimated 25,000-159,000 people each year, with more than half of them in children. The high incidence of human rabies in spite of effective vaccines is mainly linked to the lack of compliance with the complicated administration schedule, inadequacies of the community public health system for local administration by the parenteral route and the overall costs of the vaccine. The goal of our work was the development of a simple, affordable and effective vaccine strategy to prevent human rabies virus infection. This next generation vaccine is based on a replication-defective chimpanzee adenovirus vector belonging to group C, ChAd155-RG, which encodes the rabies glycoprotein (G). We demonstrate here that a single dose of this vaccine induces protective efficacy in a murine model of rabies challenge and elicits strong and durable neutralizing antibody responses in vaccinated non-human primates. Importantly, we demonstrate that one dose of a commercial rabies vaccine effectively boosts the neutralizing antibody responses induced by ChAd155-RG in vaccinated monkeys, showing the compatibility of the novel vectored vaccine with the current post-exposure prophylaxis in the event of rabies virus exposure. Finally, we demonstrate that antibodies induced by ChAd155-RG can also neutralize European bat lyssaviruses 1 and 2 (EBLV-1 and EBLV-2) found in bat reservoirs.


Assuntos
Adenovirus dos Símios/genética , Vacina Antirrábica/imunologia , Raiva/prevenção & controle , Animais , Antígenos Virais , Feminino , Vetores Genéticos/genética , Humanos , Macaca fascicularis , Camundongos , Pan troglodytes/virologia , Profilaxia Pós-Exposição , Coelhos , Vírus da Raiva/genética , Vírus da Raiva/imunologia , Sorogrupo , Vacinação , Vacinas Sintéticas/imunologia , Zoonoses
5.
Front Immunol ; 9: 3175, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30713538

RESUMO

Background: Nearly 3 million people worldwide are coinfected with HIV and HCV. Affordable strategies for prevention are needed. We developed a novel vaccination regimen involving replication-defective and serologically distinct chimpanzee adenovirus (ChAd3, ChAd63) vector priming followed by modified vaccinia Ankara (MVA) boosts, for simultaneous delivery of HCV non-structural (NSmut) and HIV-1 conserved (HIVconsv) region immunogens. Methods: We conducted a phase I trial in which 33 healthy volunteers were sequentially enrolled and vaccinated via the intramuscular route as follows: 9 received ChAd3-NSmut [2.5 × 1010 vp] and MVA-NSmut [2 × 108 pfu] at weeks 0 and 8, respectively; 8 received ChAdV63.HIVconsv [5 × 1010 vp] and MVA.HIVconsv [2 × 108 pfu] at the same interval; 16 were co-primed with ChAd3-NSmut [2.5 × 1010 vp] and ChAdV63.HIVconsv [5 × 1010 vp] followed at week 8 by MVA-NSmut and MVA.HIVconsv [both 1 × 108 pfu]. Immunogenicity was assessed using peptide pools in ex vivo ELISpot and intracellular cytokine assays. Vaccine-induced whole blood transcriptome changes were assessed by microarray analysis. Results: All vaccines were well tolerated and no vaccine-related serious adverse events occurred. Co-administration of the prime-boost vaccine regimens induced high magnitude and broad T cell responses that were similar to those observed following immunization with either regimen alone. Median (interquartile range, IQR) peak responses to NSmut were 3,480 (2,728-4,464) and 3,405 (2,307-7,804) spot-forming cells (SFC)/106 PBMC for single and combined HCV vaccinations, respectively (p = 0.8). Median (IQR) peak responses to HIVconsv were 1,305 (1,095-4,967) and 1,005 (169-2,482) SFC/106 PBMC for single and combined HIV-1 vaccinations, respectively (p = 0.5). Responses were maintained above baseline to 34 weeks post-vaccination. Intracellular cytokine analysis indicated that the responding populations comprised polyfunctional CD4+ and CD8+ T cells. Canonical pathway analysis showed that in the single and combined vaccination groups, pathways associated with antiviral and innate immune responses were enriched for upregulated interferon-stimulated genes 24 h after priming and boosting vaccinations. Conclusions: Serologically distinct adenoviral vectors encoding HCV and HIV-1 immunogens can be safely co-administered without reducing the immunogenicity of either vaccine. This provides a novel strategy for targeting these viruses simultaneously and for other pathogens that affect the same populations. Clinical trial registration: https://clinicaltrials.gov, identifier: NCT02362217.


Assuntos
Adenovirus dos Símios , Coinfecção/prevenção & controle , Vetores Genéticos , Infecções por HIV/prevenção & controle , Hepatite C/prevenção & controle , Vacinas Virais/imunologia , Adenovirus dos Símios/classificação , Adenovirus dos Símios/genética , Adolescente , Adulto , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Citocinas/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , Hepatite C/genética , Hepatite C/imunologia , Hepatite C/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T/imunologia , Linfócitos T/metabolismo , Resultado do Tratamento , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...