Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Pathol ; 46(1): 28-46, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28929951

RESUMO

Assessing the potential health risks for newly developed nanoparticles poses a significant challenge. Nanometer-sized particles are not generally detectable with the light microscope. Electron microscopy typically requires high-level doses, above the physiologic range, for particle examination in tissues. Enhanced dark-field microscopy (EDM) is an adaption of the light microscope that images scattered light. Nanoparticles scatter light with high efficiency while normal tissues do not. EDM has the potential to identify the critical target sites for nanoparticle deposition and injury in the lungs and other organs. This study describes the methods for EDM imaging of nanoparticles and applications. Examples of EDM application include measurement of deposition and clearance patterns. Imaging of a wide variety of nanoparticles demonstrated frequent situations where nanoparticles detected by EDM were not visible by light microscopy. EDM examination of colloidal gold nanospheres (10-100 nm diameter) demonstrated a detection size limit of approximately 15 nm in tissue sections. EDM determined nanoparticle volume density was directly proportional to total lung burden of exposed animals. The results confirm that EDM can determine nanoparticle distribution, clearance, transport to lymph nodes, and accumulation in extrapulmonary organs. Thus, EDM substantially improves the qualitative and quantitative microscopic evaluation of inhaled nanoparticles.


Assuntos
Pulmão/efeitos dos fármacos , Microscopia/métodos , Nanopartículas/toxicidade , Animais , Exposição por Inalação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
2.
Part Fibre Toxicol ; 13(1): 34, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27328692

RESUMO

BACKGROUND: Graphene, a monolayer of carbon, is an engineered nanomaterial (ENM) with physical and chemical properties that may offer application advantages over other carbonaceous ENMs, such as carbon nanotubes (CNT). The goal of this study was to comparatively assess pulmonary and systemic toxicity of graphite nanoplates, a member of the graphene-based nanomaterial family, with respect to nanoplate size. METHODS: Three sizes of graphite nanoplates [20 µm lateral (Gr20), 5 µm lateral (Gr5), and <2 µm lateral (Gr1)] ranging from 8-25 nm in thickness were characterized for difference in surface area, structure,, zeta potential, and agglomeration in dispersion medium, the vehicle for in vivo studies. Mice were exposed by pharyngeal aspiration to these 3 sizes of graphite nanoplates at doses of 4 or 40 µg/mouse, or to carbon black (CB) as a carbonaceous control material. At 4 h, 1 day, 7 days, 1 month, and 2 months post-exposure, bronchoalveolar lavage was performed to collect fluid and cells for analysis of lung injury and inflammation. Particle clearance, histopathology and gene expression in lung tissue were evaluated. In addition, protein levels and gene expression were measured in blood, heart, aorta and liver to assess systemic responses. RESULTS: All Gr samples were found to be similarly composed of two graphite structures and agglomerated to varying degrees in DM in proportion to the lateral dimension. Surface area for Gr1 was approximately 7-fold greater than Gr5 and Gr20, but was less reactive reactive per m(2). At the low dose, none of the Gr materials induced toxicity. At the high dose, Gr20 and Gr5 exposure increased indices of lung inflammation and injury in lavage fluid and tissue gene expression to a greater degree and duration than Gr1 and CB. Gr5 and Gr20 showed no or minimal lung epithelial hypertrophy and hyperplasia, and no development of fibrosis by 2 months post-exposure. In addition, the aorta and liver inflammatory and acute phase genes were transiently elevated in Gr5 and Gr20, relative to Gr1. CONCLUSIONS: Pulmonary and systemic toxicity of graphite nanoplates may be dependent on lateral size and/or surface reactivity, with the graphite nanoplates > 5 µm laterally inducing greater toxicity which peaked at the early time points post-exposure relative to the 1-2 µm graphite nanoplate.


Assuntos
Grafite/toxicidade , Pulmão/efeitos dos fármacos , Nanopartículas , Nanoestruturas/toxicidade , Animais , Líquido da Lavagem Broncoalveolar , Pulmão/metabolismo , Camundongos , Microscopia Eletrônica de Varredura , RNA Mensageiro/metabolismo
3.
Part Fibre Toxicol ; 10: 38, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23927530

RESUMO

BACKGROUND: Inhalation exposure studies of mice were conducted to determine if multi-walled carbon nanotubes (MWCNT) distribute to the tracheobronchial lymphatics, parietal pleura, respiratory musculature and/or extrapulmonary organs. Male C57BL/6 J mice were exposed in a whole-body inhalation system to a 5 mg/m3 MWCNT aerosol for 5 hours/day for 12 days (4 times/week for 3 weeks, lung burden 28.1 ug/lung). At 1 day and 336 days after the 12 day exposure period, mice were anesthetized and lungs, lymph nodes and extrapulmonary tissues were preserved by whole body vascular perfusion of paraformaldehyde while the lungs were inflated with air. Separate, clean-air control groups were studied at 1 day and 336 days post-exposure. Sirius Red stained sections from lung, tracheobronchial lymph nodes, diaphragm, chest wall, heart, brain, kidney and liver were analyzed. Enhanced darkfield microscopy and morphometric methods were used to detect and count MWCNT in tissue sections. Counts in tissue sections were expressed as number of MWCNT per g of tissue and as a percentage of total lung burden (Mean ± S.E., N = 8 mice per group). MWCNT burden in tracheobronchial lymph nodes was determined separately based on the volume density in the lymph nodes relative to the volume density in the lungs. Field emission scanning electron microscopy (FESEM) was used to examine MWCNT structure in the various tissues. RESULTS: Tracheobronchial lymph nodes were found to contain 1.08 and 7.34 percent of the lung burden at 1 day and 336 days post-exposure, respectively. Although agglomerates account for approximately 54% of lung burden, only singlet MWCNT were observed in the diaphragm, chest wall, liver, kidney, heart and brain. At one day post exposure, the average length of singlet MWCNT in liver and kidney, was comparable to that of singlet MWCNT in the lungs 8.2 ± 0.3 versus 7.5 ± 0.4 um, respectively. On average, there were 15,371 and 109,885 fibers per gram in liver, kidney, heart and brain at 1 day and 336 days post-exposure, respectively. The burden of singlet MWCNT in the lymph nodes, diaphragm, chest wall and extrapulmonary organs at 336 days post-exposure was significantly higher than at 1 day post-exposure. CONCLUSIONS: Inhaled MWCNT, which deposit in the lungs, are transported to the parietal pleura, the respiratory musculature, liver, kidney, heart and brain in a singlet form and accumulate with time following exposure. The tracheobronchial lymph nodes contain high levels of MWCNT following exposure and further accumulate over nearly a year to levels that are a significant fraction of the lung burden 1 day post-exposure.


Assuntos
Exposição por Inalação , Pulmão/metabolismo , Nanotubos de Carbono , Animais , Transporte Biológico , Carga Corporal (Radioterapia) , Exposição por Inalação/efeitos adversos , Pulmão/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/efeitos adversos , Medição de Risco , Fatores de Tempo , Distribuição Tecidual
4.
Part Fibre Toxicol ; 10: 33, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23895460

RESUMO

BACKGROUND: Prior studies have demonstrated a rapid and progressive acute phase response to bolus aspiration of multi-walled carbon nanotubes (MWCNTs). In this study we sought to test the hypothesis that inhalation exposure to MWCNT produces a fibrotic response and that the response is chronically persistent. To address the hypothesis that inhaled MWCNTs cause persistent morphologic changes, male C57BL/6 J mice were exposed in a whole-body inhalation system to a MWCNT aerosol and the fibrotic response in the alveolar region examined at up to 336 days after termination of exposure. METHODS: Inhalation exposure was to a 5 mg/m3 MWCNT aerosol for 5 hours/day for 12 days (4 times/week for 3 weeks). At the end of inhalation exposures, lungs were either lavaged for analysis of bronchoalveolar lavage (BAL) or preserved by vascular perfusion of fixative while inflated with air at 1, 14, 84, 168 and 336 days post inhalation exposure. Separate, clean-air control groups were also studied. Light microscopy, enhanced darkfield microscopy and field emission electron microscopy (FESEM) of tissue sections were used to analyze the distribution of lung burden following inhalation exposure. Morphometric measurements of Sirius Red staining for fibrillar collagen were used to assess the connective tissue response. Serial section analysis of enhanced darkfield microscope images was used to examine the redistribution of MWCNT fibers within the lungs during the post-exposure period. RESULTS: At day 1 post-exposure 84 ± 3 and 16 ± 2 percent of the lung burden (Mean ± S.E., N = 5) were in the alveolar and airway regions, respectively. Initial distribution within the alveolar region was 56 ± 5, 7 ± 4 and 20 ± 3 percent of lung burden in alveolar macrophages, alveolar airspaces and alveolar tissue, respectively. Clearance reduced the alveolar macrophage burden of MWCNTs by 35 percent between 1 and 168 days post-exposure, while the content of MWCNTs in the alveolar tissue increased by 63 percent. Large MWCNT structures containing greater than 4 fibers were 53.6 percent of the initial lung burden and accounted for the majority of the decline with clearance, while lung burden of singlet MWCNT was essentially unchanged. The mean linear intercept of alveolar airspace, a measure of the expansion of the lungs, was not significantly different between groups. Pulmonary inflammation and damage, measured as the number of polymorphnuclear leukocytes (PMNs) or lactate dehydrogenase activity (LDH) and albumin in BAL, increased rapidly (1 day post) after inhalation of MWCNTs and declined slowly with time post-exposure. The fibrillar collagen in the alveolar region of MWCNT-exposed mice demonstrated a progressive increase in thickness over time (0.17 ± 0.02, 0.22 ± 0.02, 0.26 ± 0.03, 0.25 ± 0.02 and 0.29 ± 0.01 microns for 1, 14, 84, 168 and 336 days post-exposure) and was significantly different from clean-air controls (0.16 ± 0.02) at 84 and (0.15 ± 0.02) at 336 days post-exposure. CONCLUSIONS: Despite the relatively low fraction of the lung burden being delivered to the alveolar tissue, the average thickness of connective tissue in the alveolar region increased by 70% in the 336 days after inhalation exposure. These results demonstrate that inhaled MWCNTs deposit and are retained within the alveolar tissue where they produce a progressive and persistent fibrotic response up to 336 days post-exposure.


Assuntos
Exposição por Inalação/efeitos adversos , Nanotubos de Carbono/toxicidade , Alvéolos Pulmonares/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Aerossóis , Albuminas/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , Colágenos Fibrilares/metabolismo , L-Lactato Desidrogenase/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/ultraestrutura , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fatores de Tempo
5.
Part Fibre Toxicol ; 10: 5, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23497258

RESUMO

BACKGROUND: The potential use of quantum dots (QD) in biomedical applications, as well as in other systems that take advantage of their unique physiochemical properties, has led to concern regarding their toxicity, potential systemic distribution, and biopersistence. In addition, little is known about workplace exposure to QD in research, manufacturing, or medical settings. The goal of the present study was to assess pulmonary toxicity, clearance, and biodistribution of QD with different functional groups in rats after pulmonary exposure. METHODS: QD were composed of a cadmium-selenide (CdSe) core (~5nm) with a zinc sulfide (ZnS) shell functionalized with carboxyl (QD-COOH) or amine (QD-NH2) terminal groups. Male Sprague-Dawley rats were intratracheally-instilled (IT) with saline, QD-COOH, or QD-NH2 (12.5, 5.0, or 1.25 µg/rat). On days 0, 1, 3, 5, 7, 14, and 28 post-IT, the left lung, lung-associated lymph nodes (LALN), heart, kidneys, spleen, liver, brain, and blood were collected for metal analysis of Cd content by neutron activation to evaluate clearance and biodistribution. One right lobe was ligated and fixed for microscopy and histopathological analysis. The remaining right lobes from rats in each group were subjected to bronchoalveolar lavage (BAL) to retrieve BAL fluid and cells for analysis of injury and inflammation. RESULTS: Lung injury and inflammation was found to be dose-dependent and peaked at days 7 and 14 post-exposure for both forms of QD, with slight variations in degree of toxicity at early and later time points. Both QD appeared to lose their fluorescent properties and destabilize after 1 week in the lung. Cd persisted up to 28 days for both forms of QD; however, clearance rate was slightly greater for QD-COOH over time. No Cd was detected in the liver, spleen, heart, brain, or blood at any time point. Cd appeared in the LALN and kidneys beginning at 1-2 weeks post-exposure. CONCLUSIONS: QD-COOH and QD-NH2 differed in clearance rate and differed slightly in degree of toxicity at different time points; however, the overall pattern of toxicity and biodistribution was similar between the two particles. Toxicity may be dependent on the dissolution rate and bioavailability of free Cd.


Assuntos
Compostos de Cádmio , Lesão Pulmonar/induzido quimicamente , Pulmão/efeitos dos fármacos , Pneumonia/induzido quimicamente , Pontos Quânticos , Compostos de Selênio , Sulfetos , Compostos de Zinco , Animais , Líquido da Lavagem Broncoalveolar/citologia , Compostos de Cádmio/química , Compostos de Cádmio/farmacocinética , Compostos de Cádmio/toxicidade , Relação Dose-Resposta a Droga , Exposição por Inalação , Pulmão/metabolismo , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Ratos , Ratos Sprague-Dawley , Compostos de Selênio/química , Compostos de Selênio/farmacocinética , Compostos de Selênio/toxicidade , Sulfetos/química , Sulfetos/farmacocinética , Sulfetos/toxicidade , Propriedades de Superfície , Distribuição Tecidual , Compostos de Zinco/química , Compostos de Zinco/farmacocinética , Compostos de Zinco/toxicidade
6.
Int J Mol Sci ; 13(11): 13781-803, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23203034

RESUMO

Engineered nanomaterials have been developed for widespread applications due to many highly unique and desirable characteristics. The purpose of this study was to assess pulmonary inflammation and subepicardial arteriolar reactivity in response to multi-walled carbon nanotube (MWCNT) inhalation and evaluate the time course of vascular alterations. Rats were exposed to MWCNT aerosols producing pulmonary deposition. Pulmonary inflammation via bronchoalveolar lavage and MWCNT translocation from the lungs to systemic organs was evident 24 h post-inhalation. Coronary arterioles were evaluated 24-168 h post-exposure to determine microvascular response to changes in transmural pressure, endothelium-dependent and -independent reactivity. Myogenic responsiveness, vascular smooth muscle reactivity to nitric oxide, and α-adrenergic responses all remained intact. However, a severe impact on endothelium-dependent dilation was observed within 24 h after MWCNT inhalation, a condition which improved, but did not fully return to control after 168 h. In conclusion, results indicate that MWCNT inhalation not only leads to pulmonary inflammation and cytotoxicity at low lung burdens, but also a low level of particle translocation to systemic organs. MWCNT inhalation also leads to impairments of endothelium-dependent dilation in the coronary microcirculation within 24 h, a condition which does not fully dissipate within 168 h. The innovations within the field of nanotechnology, while exciting and novel, can only reach their full potential if toxicity is first properly assessed.


Assuntos
Vasos Coronários/patologia , Endotélio Vascular/patologia , Nanotubos de Carbono/toxicidade , Acetilcolina/farmacologia , Administração por Inalação , Animais , Pressão Arterial/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Dilatação Patológica , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Coração/anatomia & histologia , Coração/efeitos dos fármacos , Rim/patologia , Fígado/patologia , Pulmão/patologia , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Nitroprussiato/farmacologia , Tamanho do Órgão , Fenilefrina/farmacologia , Pneumonia/etiologia , Pneumonia/patologia , Ratos , Fatores de Tempo
7.
Toxicol Appl Pharmacol ; 262(3): 255-64, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22613087

RESUMO

Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO(2)) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO(2)-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO(2) in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO(2) by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-ß1 in the fibrotic process were investigated. The results showed that CeO(2) exposure significantly increased fibrotic cytokine TGF-ß1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO(2) induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5mg/kg CeO(2) and euthanized at 28 days post-exposure. Collectively, our studies show that CeO(2) induced fibrotic lung injury in rats, suggesting it may cause potential health effects.


Assuntos
Cério/toxicidade , Nanopartículas/toxicidade , Fibrose Pulmonar/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/citologia , Relação Dose-Resposta a Droga , Hidroxiprolina/análise , Pulmão/química , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/ultraestrutura , Masculino , Metaloproteinase 10 da Matriz/análise , Metaloproteinase 2 da Matriz/análise , Metaloproteinase 9 da Matriz/análise , Microscopia Eletrônica de Transmissão , Osteopontina/análise , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/análise
8.
J Nanomater ; 2012: 398302, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-26640479

RESUMO

Silicon nanowires (Si NWs) are being manufactured for use as sensors and transistors for circuit applications. The goal was to assess pulmonary toxicity and fate of Si NW using an in vivo experimental model. Male Sprague-Dawley rats were intratracheally instilled with 10, 25, 50, 100, or 250 µg of Si NW (~20-30 nm diameter; ~2-15 µm length). Lung damage and the pulmonary distribution and clearance of Si NW were assessed at 1, 3, 7, 28, and 91 days after-treatment. Si NW treatment resulted in dose-dependent increases in lung injury and inflammation that resolved over time. At day 91 after treatment with the highest doses, lung collagen was increased. Approximately 70% of deposited Si NW was cleared by 28 days with most of the Si NW localized exclusively in macrophages. In conclusion, Si NW induced transient lung toxicity which may be associated with an early rapid particle clearance; however, persistence of Si NW over time related to dose or wire length may lead to increased collagen deposition in the lung.

9.
Part Fibre Toxicol ; 8: 21, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21781304

RESUMO

BACKGROUND: Multi-walled carbon nanotubes (MWCNTs) are new manufactured nanomaterials with a wide spectrum of commercial applications. To address the hypothesis that MWCNTs cause persistent pulmonary pathology, C57BL/6J mice were exposed by pharyngeal aspiration to 10, 20, 40 or 80 µg of MWCNTs (mean dimensions of 3.9 µm × 49 nm) or vehicle. Lungs were preserved at 1, 7, 28 and 56 days post- exposure to determine the potential regions and target cells for impact by MWCNT lung burden. Morphometric measurement of Sirius Red staining was used to assess the connective tissue response. RESULTS: At 56 days post-exposure, 68.7 ± 3.9, 7.5 ± 1.9 and 22.0 ± 5.1 percent (mean ± SE, N = 8) of the MWCNT lung burden were in alveolar macrophages, alveolar tissue and granulomatous lesions, respectively. The subpleural tissues contained 1.6% of the MWCNT lung burden. No MWCNTs were found in the airways at 7, 28 or 56 days after aspiration The connective tissue in the alveolar interstitium demonstrated a progressive increase in thickness over time in the 80 µg exposure group (0.12 ± 0.01, 0.12 ± 0.01, 0.16 ± 0.01 and 0.19 ± 0.01 µm for 1, 7, 28 and 56 days post-exposure (mean ± SE, N = 8)). Dose-response determined at 56 days post-exposure for the average thickness of connective tissue in alveolar septa was 0.11 ± 0.01, 0.14 ± .02, 0.14 ± 0.01, 0.16 ± 0.01 and 0.19 ± 0.01 µm (mean ± SE, N = 8) for vehicle, 10, 20, 40 and 80 µg dose groups, respectively. CONCLUSIONS: The distribution of lung burden was predominately within alveolar macrophages with approximately 8% delivery to the alveolar septa, and a smaller but potentially significant burden to the subpleural tissues. Despite the relatively low fraction of the lung burden being delivered to the alveolar tissue, the average thickness of connective tissue in the alveolar septa was increased over vehicle control by 45% in the 40 µg and 73% in the 80 µg exposure groups. The results demonstrate that MWCNTs have the potential to produce a progressive, fibrotic response in the alveolar tissues of the lungs. However, the increases in connective tissue per µg dose of MWCNTs to the interstitium are significantly less than those previously found for single-walled carbon nanotubes (SWCNTs).


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/patologia , Nanotubos de Carbono/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Administração por Inalação , Animais , Relação Dose-Resposta a Droga , Granuloma/induzido quimicamente , Granuloma/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Part Fibre Toxicol ; 7: 28, 2010 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-20920331

RESUMO

BACKGROUND: Multi-walled carbon nanotubes (MWCNT) are new manufactured nanomaterials with a wide spectrum of commercial applications. The durability and fiber-like dimensions (mean length 3.9 µm long × 49 nm diameter) of MWCNT suggest that these fibers may migrate to and have toxicity within the pleural region. To address whether the pleura received a significant and persistent exposure, C57BL/6J mice were exposed by pharyngeal aspiration to 10, 20, 40 and 80 µg MWCNT or vehicle and the distribution of MWCNT penetrations determined at 1, 7, 28 and 56 days after exposure. Following lung fixation and sectioning, morphometric methods were used to determine the distribution of MWCNT and the number of MWCNT fiber penetrations of three barriers: alveolar epithelium (alveolar penetrations), the alveolar epithelium immediately adjacent to the pleura (subpleural tissue), and visceral pleural surface (intrapleural space). RESULTS: At 1 day 18%, 81.6% and 0.6% of the MWCNT lung burden was in the airway, the alveolar, and the subpleural regions, respectively. There was an initial, high density of penetrations into the subpleural tissue and the intrapleural space one day following aspiration which appeared to decrease due to clearance by alveolar macrophages and/or lymphatics by day 7. However, the density of penetrations increased to steady state levels in the subpleural tissue and intrapleural from day 28 - 56. At day 56 approximately 1 in every 400 fiber penetrations was in either the subpleural tissue or intrapleural space. Numerous penetrations into macrophages in the alveolar airspaces throughout the lungs were demonstrated at all times but are not included in the counts presented. CONCLUSIONS: The results document that MWCNT penetrations of alveolar macrophages, the alveolar wall, and visceral pleura are both frequent and sustained. In addition, the findings demonstrate the need to investigate the chronic toxicity of MWCNT at these sites.


Assuntos
Nanotubos de Carbono/toxicidade , Pleura/metabolismo , Animais , Transporte Biológico , Células Epiteliais/metabolismo , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
J Toxicol Environ Health A ; 73(5): 410-22, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20155582

RESUMO

Nanomaterials, including single-walled carbon nanotubes (SWCNT), are being developed for a variety of commercial products. However, adverse health effects attributed to these new materials are not well understood. Recent reports showed that exposure of mice to dispersed SWCNT (DSWCNT) produced a rapid and progressive interstitial lung fibrosis without persistent inflammation. To understand the mechanism underlying this unusual fibrogenicity of DSWCNT, the present investigation focused on the direct bioactivity of DSWCNT using a cell culture of lung fibroblasts that represent a major cell type resident in the lung interstitium and responsible for the production of collagen matrix. At concentrations relevant to those used in vivo, in vitro exposure of lung fibroblasts to DSWCNT stimulated cell proliferation and induced collagen production without producing cell damage. One of the major matrix metalloproteinases (MMP), MMP-9, which is known to be involved in lung fibrosis, was also elevated by DSWCNT treatment both in vitro and in vivo. Taken together, these results suggest that direct stimulation of fibroblasts by DSWCNT translocated into the interstitium may play a significant role in DSWCNT-induced lung fibrosis. Our data also suggest that the dispersion status and/or size of the SWCNT structures is a critical factor in determining nanoparticle fibrogenicity and that MMP-9 may be involved in the fibrogenic process. The results obtained may aid in the development of in vitro models for rapid screening of the potential fibrogenicity of carbon nanotubes, which are lacking and urgently needed.


Assuntos
Fibroblastos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Fibrose Pulmonar/induzido quimicamente , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/metabolismo , Humanos , Pulmão/citologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/ultraestrutura , Fibrose Pulmonar/metabolismo , Testes de Toxicidade
12.
Environ Health Perspect ; 114(9): 1367-73, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16966090

RESUMO

BACKGROUND: Miners inhaling respirable coal dust (CD) frequently develop coal workers' pneumoconiosis, a dust-associated pneumoconiosis characterized by lung inflammation and variable fibrosis. Many coal miners are also exposed to polycyclic aromatic hydrocarbon (PAH) components of diesel engine exhaust and cigarette smoke, which may contribute to lung disease in these workers. Recently, apoptosis was reported to play a critical role in the development of another pneumoconiosis of miners, silicosis. In addition, CD was reported to suppress cytochrome P450 1A1 (CYP1A1) induction by PAHs. METHODS: We investigated the hypothesis that apoptosis plays a critical role in lung injury and down-regulation of CYP1A1 induction in mixed exposures to CD and PAHs. We exposed rats intratracheally to 0.0, 2.5, 10.0, 20.0, or 40.0 mg/rat CD and, 11 days later, to intraperitoneal beta-naphthoflavone (BNF) , a PAH. In another group of rats exposed to CD and BNF, caspase activity was inhibited by injection of the pan-caspase inhibitor Q-VD-OPH [quinoline-Val-Asp (OMe) -CH2-OPH]. RESULTS: In rats exposed to BNF, CD exposure increased alveolar expression of the proapoptotic mediator Bax but decreased CYP1A1 induction relative to BNF exposure alone. Pan-caspase inhibition decreased CD-associated Bax expression and apoptosis but did not restore CYP1A1 activity. Further, CD-induced lung inflammation and alveolar epithelial cell hypertrophy and hyperplasia were not suppressed by caspase inhibition. CONCLUSIONS: Combined BNF and CD exposure increased Bax expression and apoptosis in the lung, but Bax and apoptosis were not the major determinants of early lung injury in this model.


Assuntos
Apoptose/efeitos dos fármacos , Caspases , Carvão Mineral/toxicidade , Citocromo P-450 CYP1A1/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Apoptose/fisiologia , Hidrocarboneto de Aril Hidroxilases/metabolismo , Inibidores de Caspase , Caspases/metabolismo , Citocromo P-450 CYP1B1 , Relação Dose-Resposta a Droga , Poeira , Pulmão/patologia , Masculino , Pneumonia/induzido quimicamente , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Ratos , Ratos Sprague-Dawley , beta-Naftoflavona/toxicidade
13.
Lab Invest ; 86(5): 458-66, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16534500

RESUMO

Two of the common features of inflammatory lung diseases are the increased production of pulmonary surfactant and the induction of lung cell apoptosis. However, the relationship between these two events has not been addressed. To investigate the role of surfactant in pulmonary inflammation and apoptosis, we instilled natural lung surfactant (Survanta) (1.6-12.5 mg) into the rat lungs and determined the number of alveolar macrophages (AMs) and apoptotic lung cells. High-dose treatments of Survanta (>6.25 mg/rat) caused an increase in macrophage cell influx and lung cell apoptosis at 4 weeks post-treatment. In vitro studies using lavaged macrophages showed Survanta did not cause apoptosis. We then examined the role of Survanta on ability of macrophages phagocytizing apoptotic cells. This study demonstrated that macrophages were able to eliminate apoptotic cells more efficiently in the absence of surfactant than in its presence. In vivo, high doses of Survanta decreased the ability to clear exogenously instilled apoptotic cells or bacteria. Taken together, our results suggest that excessive accumulation of lung surfactant by Survanta treatment can impair or overwhelm the phagocytic clearance function of AMs and that this impairment may lead to increased presence of apoptotic cells in the lung and bacterial survival.


Assuntos
Apoptose , Pulmão/patologia , Macrófagos Alveolares/fisiologia , Fagocitose , Surfactantes Pulmonares/metabolismo , Animais , Produtos Biológicos/farmacologia , Células Cultivadas , Listeria monocytogenes/isolamento & purificação , Pulmão/microbiologia , Masculino , Ratos , Ratos Endogâmicos BN
14.
Am J Physiol Lung Cell Mol Physiol ; 290(4): L695-L702, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16299056

RESUMO

Uncontrolled apoptosis has been associated with several pulmonary disorders; however, the molecular mechanism underlying this process and the fate of apoptotic cells in vivo are unclear. Here we show that direct administration of apoptotic cells to the lungs of rats caused pulmonary inflammation and fibrosis, as indicated by emigration of inflammatory cells to the air spaces, TNF-alpha immunoreactivity, and connective tissue accumulation, indicating a direct relationship between apoptotic cells and the observed lung pathologies. To determine how the lungs process the accumulated apoptotic cells, normal or apoptotic cells from autologous donor rats were labeled with fluorescent nanobeads and intratracheally instilled into the lungs of rats. Probe distribution and lung cell apoptosis were determined at various times over a 28-day period by confocal fluorescence microscopy and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, respectively. Labeled apoptotic cells were cleared by lung macrophages within 1 wk after the treatment. However, the total number of apoptotic cells in the lung remained high at 28 days posttreatment. The results indicate a continuous induction of secondary apoptosis by apoptotic cell instillation, which may contribute to the observed lung pathology. Analysis of lung cell apoptosis by caspase assays showed an elevation of caspase-8 but not caspase-9 in the treatment group at 28 days posttreatment, indicating involvement of the death receptor-mediated pathway in the apoptotic process. Together, our results demonstrate a direct effect of apoptotic cell accumulation on inflammatory and fibrotic pulmonary responses and the continuous induction of lung cell apoptosis by apoptotic cell instillation.


Assuntos
Apoptose , Líquido da Lavagem Broncoalveolar/citologia , Transplante de Células , Pneumonia/etiologia , Fibrose Pulmonar/etiologia , Traqueia , Animais , Caspase 8 , Caspases/metabolismo , Movimento Celular , Transplante de Células/métodos , Pulmão/enzimologia , Pulmão/patologia , Pulmão/fisiopatologia , Macrófagos , Masculino , Fagocitose , Ratos , Ratos Endogâmicos BN , Fatores de Tempo
15.
Am J Physiol Lung Cell Mol Physiol ; 288(4): L709-17, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15608151

RESUMO

Matrix metalloproteinases (MMPs) are the principle enzymes that initiate degradation of collagen. We examined the role of MMPs during alveolar wall fibrosis and fibrotic nodule formation from silica exposure. Rats were exposed to filtered air or 15 mg/m(3) silica by inhalation for 5 days/wk, 6 h/day. Lungs were preserved by intratracheal instillation of fixative at 20, 40, 60, 79, and 116 days of exposure. Additional groups were fixed after 20, 40, and 60 days of exposure followed by 36 days of recovery. The number of nodules, defined by a collagenous core and a bounding cell layer detached from the alveolar wall, was determined by morphometry. Lungs showed increased alveolar wall collagen and fibrotic nodules at 79 and 116 days of exposure with increased collagenase and gelatinase activity. The number of nodules per lung in exposed groups increased from 619 +/- 447 at 40 days to 13,221 +/- 1,096 at 116 days (means +/- SE, n = 5). No nodules were seen in control lungs. Silica-exposed rats with a 36-day recovery in filtered air showed enhanced MMP activity over exposure to silica for the same duration with no recovery. MMP-2 and MMP-9 were significantly elevated in alveolar macrophages after 40-day exposure. Stromelysin expression was demonstrated in alveolar macrophages and cells within fibrotic nodules. TIMP-1 expression was not significantly altered. In summary, MMP activity was upregulated at 40 days of silica exposure and progressively increased during ensuing fibrotic responses. Early expression of stromelysin was found in fibrosing alveolar walls and fibrotic nodules.


Assuntos
Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Fibrose Pulmonar/enzimologia , Silicose/enzimologia , Animais , Colágeno/metabolismo , Colagenases/metabolismo , Indução Enzimática , Inalação , Macrófagos Alveolares/enzimologia , Macrófagos Alveolares/patologia , Masculino , Metaloproteinase 3 da Matriz/farmacologia , Alvéolos Pulmonares/enzimologia , Alvéolos Pulmonares/patologia , Fibrose Pulmonar/patologia , Ratos , Ratos Endogâmicos F344 , Dióxido de Silício/toxicidade , Silicose/patologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Regulação para Cima
16.
J Cell Physiol ; 194(2): 215-24, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12494460

RESUMO

Induction of apoptosis has been associated with a variety of exposures which result in inflammatory and fibrotic lung disorders. Macrophages are key regulatory cells in the lung; however, the role of apoptotic macrophages in those pulmonary disorders is not well characterized. In the present investigation, apoptotic macrophages were instilled into the lungs of rats to study directly the pulmonary responses to apoptotic cells. The effects of apoptotic macrophages on lung inflammation and fibrosis, as well as associated protein expression of TNF-alpha, TGF-beta, and matrix metalloproteinases (MMPs) were examined. Induction of macrophage apoptosis was carried out in vitro using a variety of known apoptosis inducers. Intratracheal administration of apoptotic macrophages (5 x 10(6) cells/rat) into the lung of rats caused an increase in pulmonary infiltration of macrophages and lung cell apoptosis 4 weeks after the treatment as indicated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. In contrast, pulmonary instillation of saline or normal control macrophages had no effect. Histological analysis of lung sections showed collagen deposition and fibrotic lesions after apoptotic cell treatment but not in control groups. Immunohistochemical studies revealed increased expression of TNF-alpha, TGF-beta, MMP2, and MMP9 in the treatment group 4 weeks after the treatment. These results suggest a role for macrophage apoptosis in the initiation of these lung disorders. This study provides direct evidence that apoptotic macrophages can induce lung inflammation and fibrosis and that this induction may be associated with increased expression of TNF-alpha, TGF-beta, MMP2, and MMP9. Published 2002 Wiley-Liss, Inc.


Assuntos
Apoptose/fisiologia , Macrófagos Alveolares/fisiologia , Pneumonia/fisiopatologia , Fibrose Pulmonar/fisiopatologia , Animais , Citocinas/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Macrófagos Alveolares/patologia , Masculino , Necrose , Pneumonia/metabolismo , Pneumonia/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...