Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 10(3): 412-422, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38409292

RESUMO

The formation of a flat and thin leaf presents a developmentally challenging problem, requiring intricate regulation of adaxial-abaxial (top-bottom) polarity. The patterning principles controlling the spatial arrangement of these domains during organ growth have remained unclear. Here we show that this regulation in Arabidopsis thaliana is achieved by an organ-autonomous Turing reaction-diffusion system centred on mobile small RNAs. The data illustrate how Turing dynamics transiently instructed by prepatterned information is sufficient to self-sustain properly oriented polarity in a dynamic, growing organ, presenting intriguing parallels to left-right patterning in the vertebrate embryo. Computational modelling demonstrates that this self-organizing system continuously adapts to coordinate the robust planar polarity of a flat leaf while affording flexibility to generate the tissue patterns of evolutionarily diverse organ shapes. Our findings identify a small-RNA-based Turing network as a dynamic regulator of organ polarity that accounts for leaf shape diversity at the level of the individual organ, plant or species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Folhas de Planta/metabolismo
3.
Commun Biol ; 6(1): 834, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567954

RESUMO

In plants, developmental plasticity allows for the modulation of organ growth in response to environmental cues. Being in contact with soil, roots are the first organ that responds to various types of soil abiotic stress such as high salt concentration. In the root, developmental plasticity relies on changes in the activity of the apical meristem, the region at the tip of the root where a set of self-renewing undifferentiated stem cells sustain growth. Here, we show that salt stress promotes differentiation of root meristem cells via reducing the dosage of the microRNAs miR165 and 166. By means of genetic, molecular and computational analysis, we show that the levels of miR165 and 166 respond to high salt concentration, and that miR165 and 166-dependent PHABULOSA (PHB) modulation is central to the response of root growth to this stress. Specifically, we show that salt-dependent reduction of miR165 and 166 causes a rapid increase in PHB expression and, hence, production of the root meristem pro-differentiation hormone cytokinin. Our data provide direct evidence for how the miRNA-dependent modulation of transcription factor dosage mediates plastic development in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Estresse Salino/genética
4.
Elife ; 112022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36069528

RESUMO

Brassinosteroids (BR) are key hormonal regulators of plant development. However, whereas the individual components of BR perception and signaling are well characterized experimentally, the question of how they can act and whether they are sufficient to carry out the critical function of cellular elongation remains open. Here, we combined computational modeling with quantitative cell physiology to understand the dynamics of the plasma membrane (PM)-localized BR response pathway during the initiation of cellular responses in the epidermis of the Arabidopsis root tip that are be linked to cell elongation. The model, consisting of ordinary differential equations, comprises the BR-induced hyperpolarization of the PM, the acidification of the apoplast and subsequent cell wall swelling. We demonstrate that the competence of the root epidermal cells for the BR response predominantly depends on the amount and activity of H+-ATPases in the PM. The model further predicts that an influx of cations is required to compensate for the shift of positive charges caused by the apoplastic acidification. A potassium channel was subsequently identified and experimentally characterized, fulfilling this function. Thus, we established the landscape of components and parameters for physiological processes potentially linked to cell elongation, a central process in plant development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Simulação por Computador , Regulação da Expressão Gênica de Plantas , Raízes de Plantas , Canais de Potássio/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Transdução de Sinais
5.
Dev Cell ; 48(6): 840-852.e5, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30913408

RESUMO

High-throughput single-cell RNA sequencing (scRNA-seq) is becoming a cornerstone of developmental research, providing unprecedented power in understanding dynamic processes. Here, we present a high-resolution scRNA-seq expression atlas of the Arabidopsis root composed of thousands of independently profiled cells. This atlas provides detailed spatiotemporal information, identifying defining expression features for all major cell types, including the scarce cells of the quiescent center. These reveal key developmental regulators and downstream genes that translate cell fate into distinctive cell shapes and functions. Developmental trajectories derived from pseudotime analysis depict a finely resolved cascade of cell progressions from the niche through differentiation that are supported by mirroring expression waves of highly interconnected transcription factors. This study demonstrates the power of applying scRNA-seq to plants and provides an unparalleled spatiotemporal perspective of root cell differentiation.


Assuntos
Arabidopsis/embriologia , Arabidopsis/genética , Sequenciamento de Nucleotídeos em Larga Escala , Raízes de Plantas/embriologia , Raízes de Plantas/genética , Análise de Sequência de RNA , Análise de Célula Única , Diferenciação Celular/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Marcadores Genéticos , Meristema/citologia , Meristema/genética , Reprodutibilidade dos Testes , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Plant Physiol ; 176(1): 730-741, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29114080

RESUMO

As regulators of gene expression in multicellular organisms, microRNAs (miRNAs) are crucial for growth and development. Although a plethora of factors involved in their biogenesis and action in Arabidopsis (Arabidopsis thaliana) has been described, these processes and their fine-tuning are not fully understood. Here, we used plants expressing an artificial miRNA target mimic (MIM) to screen for negative regulators of miR156. We identified a new mutant allele of the F-box gene HAWAIIAN SKIRT (HWS; At3G61590), hws-5, as a suppressor of the MIM156-induced developmental and molecular phenotypes. In hws plants, levels of some endogenous miRNAs are increased and their mRNA targets decreased. Plants constitutively expressing full-length HWS-but not a truncated version lacking the F-box domain-display morphological and molecular phenotypes resembling those of mutants defective in miRNA biogenesis and activity. In combination with such mutants, hws loses its delayed floral organ abscission ("skirt") phenotype, suggesting epistasis. Also, the hws transcriptome profile partially resembles those of well-known miRNA mutants hyl1-2, se-3, and ago1-27, pointing to a role in a common pathway. We thus propose HWS as a novel, F-box dependent factor involved in miRNA function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , MicroRNAs/metabolismo , Arabidopsis/genética , Epistasia Genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Mutação/genética , Fenótipo , Transcriptoma/genética , Transgenes
7.
Plant J ; 69(6): 934-45, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22050482

RESUMO

Cytokinins propagate signals via multiple phosphorelays in a mechanism similar to bacterial two-component systems. In Arabidopsis, signal outputs are determined by the activation state of transcription factors termed type-B Arabidopsis response regulators (ARRs); however, their regulatory mechanisms are largely unknown. In this study, we demonstrate that the proteolysis of ARR2, a type-B ARR, modulates cytokinin signaling outputs. ARR2-hemagglutinin (HA) is rapidly degraded by cytokinin treatment, but other type-B ARRs, such as ARR1-HA, ARR10-HA, ARR12-HA and ARR18-HA, are not. ARR2 degradation is mediated by the 26S proteasome pathway, and requires cytokinin-induced phosphorylation of Asp80 residue in the receiver domain. Through mutational analysis of amino acid residues in the receiver domain, we found that substitution of Lys90 with Gly inhibits ARR2 degradation. ARR2(K90G) -HA in transgenic Arabidopsis conferred enhanced cytokinin sensitivity in various developmental processes, including primary root elongation, callus induction, leaf senescence and hypocotyl growth. ARR2(K90G) -HA increased the expression of type-A ARRs, primary cytokinin-responsive genes and indicators of signaling output in two-component circuits. Expression of ARR2(K90G) -HA from the native ARR2 promoter in the arr2-4 knock-out mutant also increased cytokinin sensitivity. In conclusion, ARR2 proteolysis is involved in the maintenance of the primary signaling output for normal developmental processes mediated by cytokinin in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Citocininas/farmacologia , Proteínas de Ligação a DNA/metabolismo , Proteólise , Transdução de Sinais , Fatores de Transcrição/metabolismo , Substituição de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hemaglutininas/metabolismo , Hipocótilo/crescimento & desenvolvimento , Lisina/genética , Lisina/metabolismo , Fosforilação , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/genética
8.
Curr Biol ; 21(22): 1918-23, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-22079112

RESUMO

In the Arabidopsis root meristem, polar auxin transport creates a transcriptional auxin response gradient that peaks at the stem cell niche and gradually decreases as stem cell daughters divide and differentiate [1-3]. The amplitude and extent of this gradient are essential for both stem cell maintenance and root meristem growth [4, 5]. To investigate why expression of some auxin-responsive genes, such as the essential root meristem growth regulator BREVIS RADIX (BRX) [6], deviates from this gradient, we combined experimental and computational approaches. We created cellular-level root meristem models that accurately reproduce distribution of nuclear auxin activity and allow dynamic modeling of regulatory processes to guide experimentation. Expression profiles deviating from the auxin gradient could only be modeled after intersection of auxin activity with the observed differential endocytosis pattern and positive autoregulatory feedback through plasma-membrane-to-nucleus transfer of BRX. Because BRX is required for expression of certain auxin response factor targets, our data suggest a cell-type-specific endocytosis-dependent input into transcriptional auxin perception. This input sustains expression of a subset of auxin-responsive genes across the root meristem's division and transition zones and is essential for meristem growth. Thus, the endocytosis pattern provides specific positional information to modulate auxin response.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Endocitose , Ácidos Indolacéticos/metabolismo , Meristema/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Simulação por Computador , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Modelos Biológicos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
9.
Proc Natl Acad Sci U S A ; 107(52): 22734-9, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21149702

RESUMO

A central question in developmental biology is how multicellular organisms coordinate cell division and differentiation to determine organ size. In Arabidopsis roots, this balance is controlled by cytokinin-induced expression of SHORT HYPOCOTYL 2 (SHY2) in the so-called transition zone of the meristem, where SHY2 negatively regulates auxin response factors (ARFs) by protein-protein interaction. The resulting down-regulation of PIN-FORMED (PIN) auxin efflux carriers is considered the key event in promoting differentiation of meristematic cells. Here we show that this regulation involves additional, intermediary factors and is spatio-temporally constrained. We found that the described cytokinin-auxin crosstalk antagonizes BREVIS RADIX (BRX) activity in the developing protophloem. BRX is an auxin-responsive target of the prototypical ARF MONOPTEROS (MP), a key promoter of vascular development, and transiently enhances PIN3 expression to promote meristem growth in young roots. At later stages, cytokinin induction of SHY2 in the vascular transition zone restricts BRX expression to down-regulate PIN3 and thus limit meristem growth. Interestingly, proper SHY2 expression requires BRX, which could reflect feedback on the auxin responsiveness of SHY2 because BRX protein can directly interact with MP, likely acting as a cofactor. Thus, cross-regulatory antagonism between BRX and SHY2 could determine ARF activity in the protophloem. Our data suggest a model in which the regulatory interactions favor BRX expression in the early proximal meristem and SHY2 prevails because of supplementary cytokinin induction in the later distal meristem. The complex equilibrium of this regulatory module might represent a universal switch in the transition toward differentiation in various developmental contexts.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Western Blotting , Citocininas/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ácidos Indolacéticos/farmacologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Microscopia Confocal , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
New Phytol ; 188(1): 23-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20649916

RESUMO

• BREVIS RADIX (BRX) has been identified through a loss-of-function allele in the Umkirch-1 accession in a natural variation screen for Arabidopsis root growth vigor. Physiological and gene expression analyses have suggested that BRX is rate limiting for auxin-responsive gene expression by mediating cross-talk with the brassinosteroid pathway, as impaired root growth and reduced auxin perception of brx can be (partially) rescued by external brassinosteroid application. • Using genetic tools, we show that brx mutants also display significantly reduced cotyledon and leaf growth. • Similar to the root, the amplitude and penetrance of this phenotype depends on genetic background and shares the physiological features, reduced auxin perception and brassinosteroid rescue. Furthermore, reciprocal grafting experiments between mutant and complemented brx shoot scions and root stocks suggest that the shoot phenotypes are not an indirect consequence of the root phenotype. Finally, BRX gain-of-function lines display epinastic leaf growth and, in the case of dominant negative interference, increased epidermal cell size. Consistent with an impact of BRX on brassinosteroid biosynthesis, this phenotype is accompanied by increased brassinosteroid levels. • In summary, our results demonstrate a ubiquitous, although quantitatively variable role of BRX in modulating the growth rate in both the root and shoot.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Arabidopsis/citologia , Arabidopsis/metabolismo , Brassinosteroides , Colestanóis/metabolismo , Cotilédone/anatomia & histologia , Cotilédone/citologia , Cotilédone/metabolismo , Mutação/genética , Tamanho do Órgão , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/citologia , Brotos de Planta/metabolismo , Esteroides Heterocíclicos/metabolismo
11.
Development ; 136(12): 2059-67, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19465596

RESUMO

In Arabidopsis, interplay between nuclear auxin perception and trans-cellular polar auxin transport determines the transcriptional auxin response. In brevis radix (brx) mutants, this response is impaired, probably indirectly because of disturbed crosstalk between the auxin and brassinosteroid pathways. Here we provide evidence that BRX protein is plasma membrane-associated, but translocates to the nucleus upon auxin treatment to modulate cellular growth, possibly in conjunction with NGATHA class B3 domain-type transcription factors. Application of the polar auxin transport inhibitor naphthalene phthalamic acid (NPA) resulted in increased BRX abundance at the plasma membrane. Thus, nuclear translocation of BRX could depend on cellular auxin concentration or on auxin flux. Supporting this idea, NPA treatment of wild-type roots phenocopied the brx root meristem phenotype. Moreover, BRX is constitutively turned over by the proteasome pathway in the nucleus. However, a stabilized C-terminal BRX fragment significantly rescued the brx root growth phenotype and triggered a hypocotyl gain-of-function phenotype, similar to strong overexpressors of full length BRX. Therefore, although BRX activity is required in the nucleus, excess activity interferes with normal development. Finally, similar to the PIN-FORMED 1 (PIN1) auxin efflux carrier, BRX is polarly localized in vascular cells and subject to endocytic recycling. Expression of BRX under control of the PIN1 promoter fully rescued the brx short root phenotype, suggesting that the two genes act in the same tissues. Collectively, our results suggest that BRX might provide a contextual readout to synchronize cellular growth with the auxin concentration gradient across the root tip.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Ácidos Indolacéticos/farmacologia , Arabidopsis/embriologia , Proteínas de Arabidopsis/genética , Endocitose , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Raízes de Plantas/embriologia , Raízes de Plantas/metabolismo , Transporte Proteico
12.
Curr Biol ; 17(8): 678-82, 2007 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-17363254

RESUMO

Plant postembryonic development takes place in the meristems, where stem cells self-renew and produce daughter cells that differentiate and give rise to different organ structures. For the maintenance of meristems, the rate of differentiation of daughter cells must equal the generation of new cells: How this is achieved is a central question in plant development. In the Arabidopsis root meristem, stem cells surround a small group of organizing cells, the quiescent center. Together they form a stem cell niche [1, 2], whose position and activity depends on the combinatorial action of two sets of genes - PLETHORA1 (PLT1) and PLETHORA2 (PLT2)[3, 4] and SCARECROW (SCR) and SHORTROOT (SHR)[2] - as well as on polar auxin transport. In contrast, the mechanisms controlling meristematic cell differentiation remain unclear. Here, we report that cytokinins control the rate of meristematic cell differentiation and thus determine root-meristem size via a two-component receptor histidine kinase-transcription factor signaling pathway. Analysis of the root meristems of cytokinin mutants, spatial cytokinin depletion, and exogenous cytokinin application indicates that cytokinins act in a restricted region of the root meristem, where they antagonize a non-cell-autonomous cell-division signal, and we provide evidence that this signal is auxin.


Assuntos
Arabidopsis/citologia , Diferenciação Celular , Citocininas/metabolismo , Meristema/citologia , Raízes de Plantas/citologia , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA