Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 7(3)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34449612

RESUMO

Copper complexes with different ligands (ethylenediaminetetraacetic acid, EDTA, ammonium citrate tribasic, TAC, and alanine, ALA) were studied in aqueous solutions and hydrogels with the aim of setting the optimal conditions for copper stain removal from marble by agar gels, with damage minimization. The stoichiometry and stability of copper complexes were monitored by ultraviolet-visible (UV-Vis) spectroscopy and the symmetry of Cu(II) centers in the different gel formulations was studied by electron paramagnetic resonance (EPR) spectroscopy. Cleaning effectiveness in optimized conditions was verified on marble laboratory specimens through color variations and by determining copper on gels by inductively coupled plasma-mass spectrometry (ICP-MS). Two copper complexes with TAC were identified, one having the known stoichiometry 1:1, and the other 1:2, Cu(TAC)2, never observed before. The stability of all the complexes at different pH was observed to increase with pH. At pH 10.0, the gel's effectiveness in removing copper salts from marble was the highest in the presence of ALA, followed by EDTA, TAC, and pure agar gel. Limited damage to the marble surface was observed when gels with added EDTA and TAC were employed, whereas agar gel with ALA was determined to be the most efficient and safe cleaning material.

2.
Molecules ; 26(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199539

RESUMO

The Lab4treat experience has been developed to demonstrate the use of magnetic materials in environmental applications. It was projected in the frame of the European project Mat4Treat, and it was tested several times in front of different audiences ranging from school students to the general public in training and/or divulgation events. The experience lends itself to discuss several aspects of actuality, physics and chemistry, which can be explained by modulating the discussion depth level, in order to meet the interests of younger or more experienced people and expand their knowledge. The topic is relevant, dealing with the recycling of urban waste and water depollution. The paper is placed within the field of water treatment for contaminant removal; therefore, a rich collection of recent (and less recent) papers dealing with magnetic materials and environmental issues is described in the Introduction section. In addition, the paper contains a detailed description of the experiment and a list of the possible topics which can be developed during the activity. The experimental approach makes the comprehension of scientific phenomena effective, and, from this perspective, the paper can be considered to be an example of interactive teaching.

3.
Nanomaterials (Basel) ; 10(3)2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32156025

RESUMO

Cyclodextrin (CD)-based polymers are known to efficiently form molecular inclusion complexes with various organic and inorganic guest compounds. In addition, they also have a great potential as metal complexes because deprotonated hydroxyls can strongly bind metal ions under alkaline conditions. The range of environmental conditions for polycyclodextrin/metal ion complexation can be extended by the polymerization of CDs with polyacids. This article describes the preparation and characterization of a new type of poly(ß-cyclodextrin) (Poly-ßCD) sub-micrometric fibers and explores their potential as metal ion sorbents. A water-soluble hyper-branched ß-cyclodextrin polymer was blended with poly(vinyl alcohol) (PVA) and here used to improve the mechanical and morphological features of the fibers. Solutions with a different Poly-ßCD/PVA ratio were electrospun, and the fibers were cross-linked by a post-spinning thermal treatment at 160 °C to ensure non-solubility in water. The fiber morphology was analyzed by scanning electron microscopy (SEM) before and after the curing process, and physical-chemical properties were studied by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The capability of the insoluble cyclodextrin-based fibers to remove heavy metals from wastewaters was investigated by testing the adsorption of Cu2+ and Cd2+ using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The results suggest that the poly(ß-cyclodextrin)/poly(vinyl alcohol) sub-micrometric fibers can complex metal ions and are especially effective Cu2+ sorbents, thus opening new perspectives to the development of fibers and membranes capable of removing both metal ions and organic pollutants.

4.
J Colloid Interface Sci ; 544: 198-205, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30844568

RESUMO

In this work, thermoresponsive polymer grafted magnetic mesoporous silica nanoparticles were prepared, fully characterized and tested as controlled drug delivery systems. For this purpose, iron oxide nanoparticles coated with mesoporous silica shell were grafted with poly(N-isopropylacrylamide-co-3-(methacryloxypropyl)trimethoxysilane) (PNIPAM-co-MPS). The grafting and polymerization on the as-prepared nanoparticles were performed in one-step procedure. Using this methodology, the polymer was successfully grafted mainly onto the silica surface, leaving the mesopores empty for the drug loading. The prepared hybrid nanoparticles (MMSNP-PNIPAM-co-MPS) showed high magnetization saturation (19.5 emu g-1) and high specific surface area (505 m2 g-1) and pore volume (0.29 cm3 g-1). Ibuprofen was used as a model drug to test the performance of the hybrid particles as thermosensitive drug delivery systems. For this, in vitro drug delivery tests were conducted below (25 °C) and above (40 °C) the lower critical solution temperature (LCST) of the polymer (PNIPAM-co-MPS). Considerable difference (80%) in the ibuprofen release at these two temperatures and a fast and complete release of the drug at 40 °C was observed. These results suggest that the thermoresponsive copolymer acts as a gatekeeper for the temperature-controlled release of the drug loaded inside the mesopores. Therefore, MMSNP-PNIPAM-co-MPS are promising magnetic and thermoresponsive nanocarriers for targeted delivery of therapeutic substances.


Assuntos
Resinas Acrílicas/química , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Metacrilatos/química , Silanos/química , Dióxido de Silício/química , Óxido Ferroso-Férrico/química , Ibuprofeno/farmacologia , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Temperatura
5.
RSC Adv ; 8(3): 1246-1254, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35540902

RESUMO

Thermoresponsive poly(N-isopropylacrylamide)-grafted silica nanoparticles (SiNPs) have been synthesized and fully characterized by ATR-FTIR, TGA, HRTEM, BET and DLS analysis. Hybrid solid phase extraction (SPE) beds with tuneable pore size and switchable surface chemistry were prepared by packing the polymer-grafted nanoparticles inside SPE cartridges. The cartridges were tested by checking the thermo-regulated elution of model compounds, namely methylene blue, caffeine and amoxicillin. Extraction of the analytes and regeneration of the interaction sites on the sorbent surface was carried out entirely in water solution by changing the external temperature below and above the lower critical solution temperature (LCST) of the polymer. The results demonstrate that the elution of model compounds depends on the temperature-regulated size of the inter-particle voids and on the change of surface properties of the PNIPAM-grafted nanoparticles from hydrophilic to hydrophobic.

6.
Asian J Pharm Sci ; 12(3): 279-284, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-32104339

RESUMO

Hybrid drug delivery systems (DDS) have been prepared by grafting poly(NIPAM-co-MPS) chains on multimodal porous silica nanoparticles having an inner mesoporous structure and an outer thin layer of micropores. The hybrid thermoresponsive DDS were fully characterized and loaded with a model drug. The in vitro drug release tests are carried out at below and above the lower critical solution temperature (LCST) of the copolymer. The results have revealed that due to the presence of small diameter (~1.3 nm) micropores at the periphery of the particles, the collapsed globules of the thermoresponsive copolymer above its LCST hinders the complete release of the drug which resulted in a reverse thermoresponsive drug release profile by the hybrid DDS.

7.
Beilstein J Nanotechnol ; 7: 1454-1460, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826520

RESUMO

Large-mesopore silica films with a narrow pore size distribution and high porosity have been obtained by a sol-gel reaction of a silicon oxide precursor (TEOS) and using polystyrene-block-poly(ethylene oxide) (PS-b-PEO) copolymers as templates in an acidic environment. PS-b-PEO copolymers with different molecular weight and composition have been studied in order to assess the effects of the block length on the pore size of the templated silica films. The changes in the morphology of the porous systems have been investigated by transmission electron microscopy and a systematic analysis has been carried out, evidencing the dependence between the hydrophilic/hydrophobic ratio of the two polymer blocks and the size of the final silica pores. The obtained results prove that by tuning the PS/PEO ratio, the pore size of the templated silica films can be easily and finely predicted.

8.
Int J Pharm ; 511(1): 446-454, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27421910

RESUMO

Recently, mesoporous silica nanoparticles (MSNs) have emerged as promising drug delivery systems able to preserve the integrity of the carried substance and/or to selectively reach a target site; however, they have rarely been explored for skin application. In this study, thermoresponsive MSNs, designed to work at physiologic cutaneous temperature, are proposed as innovative topical carriers for quercetin (Q), a well-known antioxidant. The thermosensitive nanoparticles were prepared by functionalizing two different types of matrices, with pore size of 3.5nm (MSNsmall) and 5.0nm (MSNbig), carrying out a free radical copolymerization of N-isopropylacrylamide (NIPAM) and 3-(methacryloxypropyl)trimethoxysilane (MPS) inside the mesopores. The obtained copolymer-grafted MSNs (copoly-MSNs) were physico-chemically characterized and their biocompatibility was attested on a human keratinocyte cell line (HaCaT). The release profiles were assessed and the functional activity of Q, free or loaded, was evaluated in terms of antiradical and metal chelating activities. Ex vivo accumulation and permeation through porcine skin were also investigated. The characterization confirmed the copolymer functionalization of the MSNs. In addition, both the bare and functionalized silica matrices were found to be biocompatible. Among the copolymer-grafted complexes, Q/copoly-MSNbig exhibited more evident thermoresponsive behavior proving the potential of these thermosensitive systems for advanced dermal delivery.


Assuntos
Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Quercetina/administração & dosagem , Dióxido de Silício/administração & dosagem , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Linhagem Celular Transformada , Portadores de Fármacos/metabolismo , Humanos , Nanopartículas/metabolismo , Técnicas de Cultura de Órgãos , Porosidade , Quercetina/metabolismo , Pele/metabolismo , Suínos
9.
Beilstein J Nanotechnol ; 6: 2105-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26665082

RESUMO

Highly selective porous films were prepared by spin-coating deposition of colloidal silica nanoparticles on an appropriate macroporous substrate. Silica nanoparticles very homogenous in size were obtained by sol-gel reaction of a metal oxide silica precursor, tetraethyl orthosilicate (TEOS), and using polystyrene-block-poly(ethylene oxide) (PS-b-PEO) copolymers as soft-templating agents. Nanoparticles synthesis was carried out in a mixed solvent system. After spin-coating onto a macroporous silicon nitride support, silica nanoparticles were calcined under controlled conditions. An organized nanoporous layer was obtained characterized by a depth filter-like structure with internal porosity due to interparticle voids. Permeability and size-selectivity were studied by monitoring the diffusion of probe molecules under standard conditions and under the application of an external stimulus (i.e., electric field). Promising results were obtained, suggesting possible applications of these nanoporous films as selective gates for controlled transport of chemical species in solution.

10.
Beilstein J Org Chem ; 10: 2586-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25550720

RESUMO

A new hyper-branched water-soluble polymer was synthesized by reacting ß-cyclodextrin with pyromellitic dianhydride beyond the critical conditions that allow the phenomenon of gelation to occur. The molar ratio between the monomers is a crucial parameter that rules the gelation process. Nevertheless, the concentration of monomers in the solvent phase plays a key role as well. Hyper-branched ß-cyclodextrin-based polymers were obtained performing the syntheses with excess of solvent and cross-linking agent, and the conditions for critical dilution were determined experimentally. A hyper-branched polymer with very high water solubility was obtained and fully characterized both as for its chemical structure and for its capability to encapsulate substances. Fluorescein was used as probe molecule to test the complexation properties of the new material.

11.
Anal Bioanal Chem ; 401(6): 1761-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21637927

RESUMO

Analytical pyrolysis with thermally assisted hydrolysis and methylation was employed to investigate ancient ointments collected from Spanish vessels coming from the sixteenth century pharmacies. The ointments were reproduced on the basis of historical recipes and characterization was made in comparison with real samples. Characteristic markers indicate the presence of beeswax, of animal and plant lipids, and of natural resins. Analyses of old samples are consistent with the modern reproductions and with the analysis of raw materials. Multivariate data analysis was used to discriminate between the different types of lipidic materials, also in connection with their relative amount in the samples.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , História da Farmácia , Pomadas/análise , Animais , História do Século XVI , Hidrólise , Lipídeos/análise , Metilação , Resinas Vegetais/análise , Espanha , Ceras/análise
12.
Appl Spectrosc ; 65(4): 429-35, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21396191

RESUMO

Mid-infrared Fourier transform fiber-optic reflection spectroscopy (mid-IR FORS) is a noninvasive and flexible spectroscopic technique. It is ideal in the art conservation field because of its portability for on-site and in situ analysis of art objects, analyses that require delicate handling, or analyses of objects that cannot be sampled. This paper studies the applicability of mid-IR FORS for the characterization of commercial artists' alkyd paints cast on different supports. As predicted, the quality of the spectra and intensity of characteristic peaks varied according to reflectivity, roughness, and materials used in the supports. The presence of organic binder was best identified by its carbonyl peak (the most intense) and CH(2) stretching peaks; however, this was not sufficient to distinguish between oil and alkyd binders. The differentiation and identification of alkyds and oils must rely on the unique fingerprint peaks. However, in some cases, the fingerprint peaks were difficult to interpret because of strong absorptions caused by inorganic paint fillers, often present in modern paint formulations, resulting in anomalous dispersion and reststrahlen distortions.

13.
Anal Bioanal Chem ; 399(9): 2939-48, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21249336

RESUMO

The most significant results concerning a chemical study to evaluate the degradability of polymeric components in four contemporary works of art, partially or completely realized in plastics, are presented and discussed in this paper. The procedure applied is mainly based on the use of Fourier transform IR and UV-vis spectroscopies and pyrolysis-gas chromatography/mass spectrometry, and consists of the following steps: (1) compositional analysis of the artworks, with particular attention to components which may have a negative effect on the overall ageing; (2) evaluation of the actual state of conservation; (3) investigation of the accelerated ageing of reference polymer samples; and (4) monitoring of the natural ageing of the artworks. On such a basis, the following could be concluded. Stage Evidence by Loris Cecchini is made of poly(ether urethane) elastomer which contains a high amount of phthalates. Their exudation gives a sticky appearance to the artwork and their removal during ageing is the main cause of the loss of flexibility. The latex used by Andrés Pinal for tailoring Traxe de Home is a natural polyisoprene, whose oxidative degradation accounts for the extensive deterioration and yellowing of the artwork. The plaster sculptures of 3D Bodyscans 1:9 by Karin Sander are coated with an aliphatic epoxy resin. Its oxidation with formation of amides is the cause of the surface yellowing. The adhesive used by Dario Villalba for Tierra, Ladrillo y Agua is a commercial poly(vinyl acetate). Simulated photoageing suggests a fast deterioration due to deacetylation and cross-linking, which possibly is the main reason for the actual detachment of debris from the support.

14.
Anal Bioanal Chem ; 396(4): 1559-69, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20012903

RESUMO

Plant gums are present in works of art as binding media for watercolours and adhesives for cellulosic substrates. Thermally assisted hydrolysis and methylation (THM) in combination with analytical pyrolysis coupled to GC/MS has been applied to the characterisation of plant gums typically used in artworks. THM products from standard samples of arabic gum, tragacanth gum and cherry gum were characterised. The main products identified are permethylated and partially methylated aldonic acids, characteristic of specific epimeric sugars. Aldonic acids were formed by alkaline hydrolysis of free reducing sugars and of reducing polysaccharide terminal groups, while methylation occurs during pyrolysis. The presence of these characteristic markers allows gum identification. A systematic analysis of all the parameters that can affect the marker yields was performed. In particular, the influence of pyrolysis temperature, reagent concentration and contact time between tetramethylammonium hydroxide and sample were studied, and different kinds of sample preparation procedures were tested. Some analyses on real watercolours were performed, and gum binders were classified using the peak area ratio of the main monosaccharide markers.


Assuntos
Arte , Gomas Vegetais/química , Adesivos , Cultura , Temperatura Alta , Hidrólise , Metilação , Pinturas , Gomas Vegetais/análise
15.
J Mass Spectrom ; 40(12): 1527-35, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16320298

RESUMO

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight mass spectrometry (MALDI-TOF-MS) on cellulosic surfaces is shown to be a suitable method for examining highly oxidized terpenoids, which are otherwise too difficult to determine by other techniques. By crystallization of a 2,5-dihydroxybenzoic acid (DHB) matrix and the sample solution on cellulose-coated thin layer chromatography(TLC) plates, spectra with good signal/noise ratios are obtained and no significant interferences due to matrix ions or cluster ions were produced, at least not in the range of m/z values of interest (>300 Da). The validity of the method was tested on natural di- and triterpenoid resins used as paint varnishes by Old Masters. The samples were analyzed before and after artificial light ageing. Di- and triterpenoid compounds, being very sensitive towards photo-oxidation, were found as oxidized molecules even in the raw resins and in the unexposed varnish layers. Artificial ageing simulating window-filtered daylight resulted in a stronger oxidation of the original terpenoids and the incorporation of up to six oxygen atoms per molecule could be demonstrated. Terpenoid dimers and their oxidation products were also detected.


Assuntos
Pintura/análise , Resinas Vegetais/análise , Resinas Vegetais/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Triterpenos/análise , Triterpenos/química , Celulose , Cromatografia Gasosa-Espectrometria de Massas , Resina Mástique , Oxirredução , Fotoquímica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Triterpenos/isolamento & purificação , Damaranos
16.
J Sep Sci ; 27(4): 263-74, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15334913

RESUMO

Emulsion paints are complex chemical systems. The main problems in their characterization are related to the similarities in polymer composition and to the presence of many different types of additives. Thus high resolution separations, sensitivity, and response specificity are required to identify simultaneously the polymer matrix and the minor components. Especially surfactants and pigments are thought to affect significantly the properties of the paint layers during ageing and their identification is the first step in evaluating the behaviour of these products in working conditions. Representative samples of acrylic emulsion paints for artists have been investigated by pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) and size exclusion chromatography-Fourier transform infrared spectroscopy (SEC-FTIR), and the results have been compared. All the analysed samples were bound in ethyl acrylate-methyl methacrylate, poly(EA-co-MMA), or n-butyl acrylate-methyl methacrylate, poly(nBA-co-MMA), copolymers. Two types of nonionic surfactants, ethoxylated fatty alcohols and alkylaryl polyethoxylates, commonly used as emulsifiers and dispersive agents have been identified, together with a number of organic pigments.

17.
J Mass Spectrom ; 38(6): 607-17, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12827630

RESUMO

Electron impact (EI) ionization and ammonia chemical ionization (NH(3)/CI) direct-temperature mass spectrometry (DTMS) was used to characterize five natural terpenoid resins: dammar, mastic, colophony, Manila copal and sandarac. Compositional differences were highlighted by the identification of low molecular mass compounds, ranging from di- to triterpenoids, and polymeric components, based on polycadinene and polycommunic acid. Photo-ageing processes occurring under accelerated indoor and outdoor exposure conditions were also investigated. NH(3)/CI and tetramethylammonium hydroxide EI were applied to increase the sensitivity towards highly oxidized molecules. Oxidation and cross-linking reactions were found to affect mostly triterpenoid resins and diterpenoid abietane and pimarane molecules. Oxidation proceeds through a radical mechanism, generally starting from conjugated double bonds. Oxygen atoms are incorporated in the terpenoid structures in the form of alcohols, ketones and carboxylic acids. Oxidized cadinene oligomers released by pyrolytic degradation of the polycadinene fraction of dammar were detected even in unaged samples. Evidence is given indicating the occurrence of cleavages in the cross-linked polycommunic structure of aged sandarac and Manila copal. Bond scissions produce oligomeric fragments based on the communic acid structure and sufficiently volatile to be desorbed at low temperature in DTMS measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...