Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(3): 893-906, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36756527

RESUMO

Graphene, one of the allotropic forms of carbon, has attracted enormous interest in the last few years due to its unique properties. Reduced graphene oxide (RGO) is known as the nanomaterial most similar to graphene in terms of electronic, chemical, mechanical, and optical properties. It is prepared from graphene oxide (GO) in the presence of different types of reducing agents. Nevertheless, the application of RGO is still limited, owing to its tendency to irreversibly aggregate in an aqueous medium. Herein, we disclosed the preparation of water-dispersible RGO from GO previously enriched with additional carboxyl functional groups through a one-pot reaction, followed by chemical reduction. This novel and unprecedentedly reported reactivity of GO toward the acylating agent succinic anhydride (SA) was experimentally investigated through XPS, Raman, FT-IR, and UV-Vis, and corroborated by DFT calculations, which have shown a peculiar involvement in the functionalization reaction of both epoxide and hydroxyl functional groups. This proposed synthetic protocol avoids use of sodium cyanide, previously reported for carboxylation of graphene, and focuses on the sustainable and scalable preparation of a water-dispersible RGO, paving the way for its application in many fields where the colloidal stability in aqueous medium is required.

2.
Dalton Trans ; 49(29): 10011-10016, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32643714

RESUMO

The chance to have persistent organic radicals in combination with metals has attracted much interest since it offers the possibility of having new functional molecules with multiple open-shell elements. In this study, we report the synthesis of two tripodal tris(2-pyridyl)methylamine ligands (TPMA) functionalized with nitronyl nitroxide persistent radicals. The newly formed ligands have been used to coordinate zinc(ii), copper(ii), iron(ii) and cobalt(ii). The resulting complexes have been investigated by means of electron paramagnetic resonance (EPR), ESI-MS, FT-IR spectroscopy and X-ray diffraction. An electron reduction of the N-O radical moiety has been observed, depending on the metal used for the formation of the complex and the reaction conditions. We have observed small differences in the EPR spectra depending on the meta or para position of the radical moiety in the complex structure and some antiferromagnetic interactions between the paramagnetic M(ii) ions and the radical species.

3.
Nanoscale ; 9(17): 5671-5676, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28422233

RESUMO

Detecting stiff nanoparticles buried in soft biological matrices by atomic force microscopy (AFM) based techniques represents a new frontier in the field of scanning probe microscopies, originally developed as surface characterization methods. Here we report the detection of stiff (magnetic) nanoparticles (NPs) internalized in cells by using contact resonance AFM (CR-AFM) employed as a potentially non-destructive subsurface characterization tool. Magnetite (Fe3O4) NPs were internalized in microglial cells from cerebral cortices of mouse embryos of 18 days by phagocytosis. Nanomechanical imaging of cells was performed by detecting the contact resonance frequencies (CRFs) of an AFM cantilever held in contact with the sample. Agglomerates of NPs internalized in cells were visualized on the basis of the local increase in the contact stiffness with respect to the surrounding biological matrix. A second AFM-based technique for nanomechanical imaging, i.e., HarmoniX™, as well as magnetic force microscopy and light microscopy were used to confirm the CR-AFM results. Thus, CR-AFM was demonstrated as a promising technique for subsurface imaging of nanomaterials in biological samples.


Assuntos
Microglia/ultraestrutura , Microscopia de Força Atômica , Nanopartículas , Animais , Estruturas Celulares , Embrião de Mamíferos , Camundongos , Vibração
4.
Clin Nucl Med ; 40(2): e104-10, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25551623

RESUMO

Among the most interesting applications of ferromagnetic nanoparticles (NPs) in medicine is the potential for localizing pharmacologically or radioactively tagged agents directly to selected tissues selected by an adjustable external magnetic field. This concept is demonstrated by the application external magnetic field on IV Tc-labeled aminosilane-coated iron oxide NPs in a rat model. In a model comparing a rat with a 0.3-T magnet over a hind paw versus a rat without a magnet, a static acquisition at 45 minutes showed that 27% of the administered radioactivity was in the area subtended by the magnet, whereas the liver displays a percentage of binding of 14% in the presence of the magnet and of 16% in the absence of an external magnetic field. These preliminary results suggest that the application of an external magnetic field may be a viable route for the development of methods for the confinement of magnetic NPs labeled with radioactive isotopes targeted for predetermined sites of the body.


Assuntos
Campos Magnéticos , Nanopartículas de Magnetita , Compostos Radiofarmacêuticos/farmacocinética , Tecnécio/farmacocinética , Animais , Fígado/efeitos dos fármacos , Masculino , Compostos Radiofarmacêuticos/administração & dosagem , Ratos , Silanos/química , Tecnécio/administração & dosagem , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...