Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 217: 114786, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36395865

RESUMO

This study compares the pre-oxidation of pharmaceutical wastewater by hydroxyl radical based advanced oxidation (HR-AOP) and a sulfate radical based advanced oxidation process (SR-AOP). The heterogeneous Fenton process is chosen as a model HR-AOP and persulfate (PS) activation as a model SR-AOP. The pre-treatment efficacy of both processes in terms of TOC, and COD removals using Fe3O4-rGO catalyst were considered. Under the investigated experimental conditions, both processes yielded fluctuating COD values with time. The heterogeneous Fenton process discovered to be the most efficient to remove 68.7% TOC in 180 min of treatment, when Fe3O4-rGO: H2O2 = 300 mg L-1:150 mM H2O2 was used at pH 3. Notably, the heterogeneous Fenton system was not considerably inhibited at the natural pH of pharmaceutical wastewater (6.75), as the process successfully removed 64.6% TOC. On the other hand, in persulfate activation studies, Fe3O4-rGO: PS = 400 mg L-1: 5 mM was the ideal condition for removing 59.5% TOC in 180 min at pH 3. Whereas the natural pH condition significantly inhibited the TOC removal, as only 20.8% TOC removal was feasible. The wastewater characterisation before and after Fenton treatment reveals that Fenton oxidation leads to an increase in inorganics (chlorides: 160 ± 15 mg L-1, nitrates: 63.14 ± 3.08 mg L-1, sulfates: 266.31 ± 31.39 mg L-1) necessitating an additional treatment step to reduce COD and inorganics further.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Oxirredução , Preparações Farmacêuticas , Eliminação de Resíduos Líquidos
2.
Environ Res ; 217: 114789, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375505

RESUMO

Owing to the rapid development of modern industry, a greater number of organic pollutants are discharged into the water matrices. In recent decades, research efforts have focused on developing more effective technologies for the remediation of water containing pharmaceuticals and personal care products (PPCPs). Recently, sulfate radicals-based advanced oxidation processes (SR-AOPs) have been extensively used due to their high oxidizing potential, and effectiveness compared with other AOPs in PPCPs remediation. The present review provides a comprehensive assessment of the different methods such as heat, ultraviolet (UV) light, photo-generated electrons, ultrasound (US), electrochemical, carbon nanomaterials, homogeneous, and heterogeneous catalysts for activating peroxymonosulfate (PMS) and peroxydisulfate (PDS). In addition, possible activation mechanisms from the point of radical and non-radical pathways are discussed. Then, biodegradability enhancement and toxicity reduction are highlighted. Comparison with other AOPs and treatment of PPCPs by the integrated process are evaluated as well. Lastly, conclusions and future perspectives on this research topic are elaborated.


Assuntos
Cosméticos , Poluentes Químicos da Água , Purificação da Água , Sulfatos , Água , Oxirredução , Purificação da Água/métodos , Preparações Farmacêuticas
3.
Chemosphere ; 290: 133348, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34922960

RESUMO

Mixed industrial wastewater treatment efficiency of combined electro-Fenton (EF) and electrocoagulation (EC) processes was investigated in the present study. Alkali modified laterite soil was used as a heterogeneous EF catalyst and found superior performance than the raw laterite soil. Initially, the effect of catalyst dosage, initial pH, and applied voltage on the performance of EF process was carried out. A total of 54.57% COD removal was observed after 60 min of the EF treatment. Further treatment was carried out with EC process at different voltages. A total of 85.27% COD removal after 2 h treatment was observed by combining two electrochemical processes. Performance of EF followed by EC (EF + EC) process was compared with EC followed by EF (EC + EF) process. Even though efficiency is the same, EF + EC is a better strategy than EC + EF as it nullifies the neutralization requirement after EF process in addition to high mineralization efficiency, enhanced biodegradability, and lesser sludge generation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Eletrocoagulação , Peróxido de Hidrogênio , Oxirredução , Eliminação de Resíduos Líquidos , Águas Residuárias
4.
Chemosphere ; 276: 130188, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33743419

RESUMO

An inadequate and inefficient performance ability of conventional methods to remove persistent organic pollutants urges the need of alternative or complementary advanced wastewater treatments methods to ensure the safer reuse of reclaimed water. Photoelectrochemical methods are emerging as promising options among other advanced oxidation processes because of the higher treatment efficiency achieved due to the synergistic effects of combined photochemical and electrolysis reactions. Synergistic effects of integrated photochemical, electrochemical and photoelectrochemical processes not only increase the hydroxyl radical production; an enhancement on the mineralization ability through various side reactions is also achieved. In this review, fundamental reaction mechanisms of different photoelectrochemical methods including photoelectrocatalysis, photo/solar electro-Fenton, photo anodic oxidation, photoelectroperoxone and photocatalytic fuel cell are discussed. Various integrated photochemical, electrochemical and photoelectrochemical processes and their synergistic effects are elaborated. Different reactor configurations along with the positioning of electrodes, photocatalysts and light source of the individual/combined photoelectrochemical treatment systems are discussed. Modified photoanode and cathode materials used in the photoelectrochemical reactors and their performance ability is presented. Photoelectrochemical treatment of real wastewater such as landfill leachate, oil mill, pharmaceutical, textile, and tannery wastewater are reviewed. Hydrogen production efficiency in the photoelectrochemical process is further elaborated. Cost and energy involved in these processes are briefed, but the applicability of photocatalytic fuel cells to reduce the electrical dependence is also summarised. Finally, the use of photoelectrochemical approaches as an alternative for treating soil washing effluents is currently discussed.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Eletrodos , Peróxido de Hidrogênio , Oxirredução , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
5.
Sci Total Environ ; 771: 145291, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545482

RESUMO

Tetracyclines (TCs) are a group of broad-spectrum antibiotics having vast human, veterinary, and aquaculture applications. The continuous release of TCs residues into the environment and the inadequate removal through the conventional treatment systems result in its prevalent occurrence in soil, surface water, groundwater, and even in drinking water. As aqueous TCs contamination is the tip of the iceberg, and TCs possess good sorption capacity towards soil, sediments, sludge, and manure, it is insufficient to rely on the sorptive removal in the conventional water treatment plants. The severity of the TCs contamination is evident from the emergence of TCs resistance in a wide variety of microorganisms. This paper reviews the recent research on the TCs occurrence in the environmental matrices, fate in natural systems, toxic effects, and the removal methods. The high performance liquid chromatography (HPLC) determination of TCs in environmental samples and the associated technology developments are analyzed. The benefits and limitations of biochemical and physicochemical removal processes are also discussed. This work draws attention to the inevitability of proper TC sludge management. This paper also gives insight into the limitations of TCs related research and the future scope of research in environmental contamination by TCs residues.


Assuntos
Tetraciclinas , Purificação da Água , Antibacterianos/toxicidade , Humanos , Esterco , Esgotos , Tetraciclinas/toxicidade
6.
Chemosphere ; 263: 127907, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32835972

RESUMO

Electrocoagulation (EC) process is found as effective water and wastewater treatment method, as it can able to remove a variety of pollutants, treat various industrial wastewater, and able to handle fluctuations in pollutant quality and quantity. The performance of EC process can be improved significantly in combination with degradation processes. Different combinations of EC process with Fenton, electro-Fenton, photo-Fenton, photocatalysis, sonochemical treatment, ozonation, indirect electrochemical oxidation, anodic oxidation and sulfate radical based advanced oxidation process are found very effective for the treatment of water and wastewater. Enhanced performance of EC process in combination with degradation process was reported in most of the articles.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Eletrocoagulação , Eletrodos , Peróxido de Hidrogênio , Oxirredução , Sulfatos , Água
7.
Chemosphere ; 251: 126437, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32171129

RESUMO

Treatment of mixed industrial wastewater is a challenging task due to its high complexity. This work scrutinizes the electrochemical treatment of mixed industrial wastewater, specifically electrocoagulation and indirect electrochemical oxidation processes through COD and color removal studies. Both processes are found to be more efficient at the wastewater pH. Monopolar connection was found more effective than bipolar connection for the removal of COD and color from wastewater. The monopolar connection removed COD up to 55% and color 56% whereas bipolar connection leads to the removal of 43% and 48% respectively at wastewater pH with an applied voltage 1.5 V in the course of 1 h of electrolysis. In the case of indirect electrochemical oxidation process using graphite electrodes, the COD and color abatement efficiencies of the indirect electrochemical oxidation process were found as 55% and 99.8%, respectively within 1 h of electrolysis conducted at pH 7.7, applied voltage 4 V, and NaCl concentration 1 g L-1. This work also highlights the importance of the presence of electrolytes in the indirect electrochemical oxidation process as the external addition of sodium chloride significantly enhanced both COD and color elimination efficiency.


Assuntos
Eliminação de Resíduos Líquidos , Cor , Eletrocoagulação , Eletrodos , Eletrólise , Grafite , Resíduos Industriais/análise , Oxirredução , Águas Residuárias
8.
J Environ Manage ; 259: 110011, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32072958

RESUMO

Bimetallic nanoparticles are the complex combination of two different metal constituents in nanoscale. Water and wastewater treatment utilizing bimetallic particles is an emerging research area. When two metals are combined, it can show not only the properties of its constituents but also new and enhanced properties derived by the synergy of the combination. These properties of bimetallic nanoparticles inevitably depend on the size, structure, and morphology of the particles. Thus the adopting synthesis strategy is very crucial to achieve desired results. Here in this review, the various bimetallic synthesis strategies are compared. The bimetallic nanoparticles decontaminate water through adsorption and/or catalysis mechanism. The various degradation pathways, specifically, adsorption, reduction, oxidation, and advanced oxidation processes are discussed in detail in this review.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Catálise , Oxirredução , Águas Residuárias , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...