Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 17(3): 371-381, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36566339

RESUMO

Mutualistic exchange of metabolites can play an important role in microbial communities. Under natural environmental conditions, such exchange may be compromised by the dispersal of metabolites and by the presence of non-cooperating microorganisms. Spatial proximity between members during sessile growth on solid surfaces has been shown to promote stabilization of cross-feeding communities against these challenges. Nonetheless, many natural cross-feeding communities are not sessile but rather pelagic and exist in turbulent aquatic environments, where partner proximity is often achieved via direct cell-cell adhesion, and cooperation occurs between physically associated cells. Partner association in aquatic environments could be further enhanced by motility of individual planktonic microorganisms. In this work, we establish a model bipartite cross-feeding community between bacteria and yeast auxotrophs to investigate the impact of direct adhesion between prokaryotic and eukaryotic partners and of bacterial motility in a stirred mutualistic co-culture. We demonstrate that adhesion can provide fitness benefit to the bacterial partner, likely by enabling local metabolite exchange within co-aggregates, and that it counteracts invasion of the community by a non-cooperating cheater strain. In a turbulent environment and at low cell densities, fitness of the bacterial partner and its competitiveness against a non-cooperating strain are further increased by motility that likely facilitates partner encounters and adhesion. These results suggest that, despite their potential fitness costs, direct adhesion between partners and its enhancement by motility may play key roles as stabilization factors for metabolic communities in turbulent aquatic environments.


Assuntos
Microbiota , Simbiose , Bactérias/genética , Bactérias/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(36): 22452-22461, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32820073

RESUMO

Carbon fixation via the Calvin cycle is constrained by the side activity of Rubisco with dioxygen, generating 2-phosphoglycolate. The metabolic recycling of phosphoglycolate was extensively studied in photoautotrophic organisms, including plants, algae, and cyanobacteria, where it is referred to as photorespiration. While receiving little attention so far, aerobic chemolithoautotrophic bacteria that operate the Calvin cycle independent of light must also recycle phosphoglycolate. As the term photorespiration is inappropriate for describing phosphoglycolate recycling in these nonphotosynthetic autotrophs, we suggest the more general term "phosphoglycolate salvage." Here, we study phosphoglycolate salvage in the model chemolithoautotroph Cupriavidus necator H16 (Ralstonia eutropha H16) by characterizing the proxy process of glycolate metabolism, performing comparative transcriptomics of autotrophic growth under low and high CO2 concentrations, and testing autotrophic growth phenotypes of gene deletion strains at ambient CO2 We find that the canonical plant-like C2 cycle does not operate in this bacterium, and instead, the bacterial-like glycerate pathway is the main route for phosphoglycolate salvage. Upon disruption of the glycerate pathway, we find that an oxidative pathway, which we term the malate cycle, supports phosphoglycolate salvage. In this cycle, glyoxylate is condensed with acetyl coenzyme A (acetyl-CoA) to give malate, which undergoes two oxidative decarboxylation steps to regenerate acetyl-CoA. When both pathways are disrupted, autotrophic growth is abolished at ambient CO2 We present bioinformatic data suggesting that the malate cycle may support phosphoglycolate salvage in diverse chemolithoautotrophic bacteria. This study thus demonstrates a so far unknown phosphoglycolate salvage pathway, highlighting important diversity in microbial carbon fixation metabolism.


Assuntos
Crescimento Quimioautotrófico/fisiologia , Glicolatos/metabolismo , Fotossíntese/fisiologia , Acetilcoenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Ciclo do Carbono/fisiologia , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Malato Sintase/metabolismo , Malatos/metabolismo , Oxirredução
3.
Metab Eng ; 62: 30-41, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32805426

RESUMO

Formate can be directly produced from CO2 and renewable electricity, making it a promising microbial feedstock for sustainable bioproduction. Cupriavidus necator is one of the few biotechnologically-relevant hosts that can grow on formate, but it uses the Calvin cycle, the high ATP cost of which limits biomass and product yields. Here, we redesign C. necator metabolism for formate assimilation via the synthetic, highly ATP-efficient reductive glycine pathway. First, we demonstrate that the upper pathway segment supports glycine biosynthesis from formate. Next, we explore the endogenous route for glycine assimilation and discover a wasteful oxidation-dependent pathway. By integrating glycine biosynthesis and assimilation we are able to replace C. necator's Calvin cycle with the synthetic pathway and achieve formatotrophic growth. We then engineer more efficient glycine metabolism and use short-term evolution to optimize pathway activity. The final growth yield we achieve (2.6 gCDW/mole-formate) nearly matches that of the WT strain using the Calvin Cycle (2.9 gCDW/mole-formate). We expect that further rational and evolutionary optimization will result in a superior formatotrophic C. necator strain, paving the way towards realizing the formate bio-economy.


Assuntos
Cupriavidus necator , Glicina , Biomassa , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Glicina/metabolismo , Fotossíntese
4.
Waste Manag ; 22(8): 865-9, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12423046

RESUMO

Vitrification and production of ceramics materials starting from sediment excavated from Venice lagoon is described. This sediment is classified as toxic waste because contains several heavy metal ions and organic pollutants and was successfully vitrified at 1200-1350 degrees C. Twenty weight percentage of glass cullet, coming from a community glass recycling program, was added to the raw materials, previously calcined at 900 degrees C, as a way of adjusting the variations of composition of the individual sediment batches. Chemical durability (leaching) tests showed that the optimized glass compositions are inert, and thus not only volume reduction but also inertization of the waste was obtained by this process. Moreover, the economics of the entire process was analysed. The valorization of the waste was accomplished by the subsequent processing of the glass derived from the inertization. Glass ceramic materials were produced by viscous phase sintering of pressed glass powders which crystallized during the densification process. Sintered glass ceramic products had good mechanical characteristics (HV = 7.5 GPa, bending strength 150 +/- 8 MPa), making them suitable for applications in the building industry.


Assuntos
Cerâmica , Conservação dos Recursos Naturais , Sedimentos Geológicos/química , Metais Pesados/química , Materiais de Construção , Substâncias Perigosas , Temperatura Alta , Metais Pesados/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...