Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 284(21): 14029-39, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19286655

RESUMO

Mismatch repair (MMR) proteins participate in cytotoxicity induced by certain DNA damage-inducing agents, including cisplatin (cis-diamminedichloroplatinum(II), CDDP), a cancer chemotherapeutic drug utilized clinically to treat a variety of malignancies. MMR proteins have been demonstrated to bind to CDDP-DNA adducts and initiate MMR protein-dependent cell death in cells treated with CDDP; however, the molecular events underlying this death remain unclear. As MMR proteins have been suggested to be important in clinical responses to CDDP, a clear understanding of MMR protein-dependent, CDDP-induced cell death is critical. In this report, we demonstrate MMR protein-dependent relocalization of cytochrome c to the cytoplasm and cleavage of caspase-9, caspase-3, and poly(ADP-ribose) polymerase upon treatment of cells with CDDP. Chemical inhibition of caspases specifically attenuates CDDP/MMR protein-dependent cytotoxicity, suggesting that a caspase-dependent signaling mechanism is required for the execution of this cell death. p53 protein levels were up-regulated independently of MMR protein status, suggesting that p53 is not a mediator of MMR-dependent, CDDP-induced death. This work is the first indication of a required signaling mechanism in CDDP-induced, MMR protein-dependent cytotoxicity, which can be uncoupled from other CDDP response pathways, and defines a critical contribution of MMR proteins to the control of cell death.


Assuntos
Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/deficiência , Proteína 2 Homóloga a MutS/deficiência , Transdução de Sinais/efeitos dos fármacos , Inibidores de Caspase , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Concentração Inibidora 50 , Proteína 2 Homóloga a MutS/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Proteases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos
2.
Prostate ; 67(2): 214-25, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17044039

RESUMO

BACKGROUND: Defects in mismatch repair (MMR) proteins have been identified in various types of cancer. However, an association with prostate cancer has been controversial. Defective MMR results in genome instability with detrimental consequences that significantly contribute to tumorigenesis. This study determined alterations in key MMR protein levels in prostate cancer with the goal to identify prognostic markers. METHODS: Prostatectomy samples were immunohistochemically stained and the relative presence or absence of key proteins MSH2, MLH1, and PMS2 determined. Cancer tissue of distinct grades was compared with the normal surrounding tissue. Microsatellite instability (MSI) in altered tissues was determined according to NCI guidelines. RESULTS: In contrast to reports that associate a lack of individual MMR proteins with tumorigenesis, a significant increase in PMS2 levels was identified in PIN lesions and prostate cancer tissue. This elevation in PMS2 was independent of changes in levels in its heterodimeric partner, MLH1. Prostate tumors with elevated levels of PMS2 were genetically unstable, which was corrected by MLH1 co-elevation. CONCLUSIONS: This is the first documentation of detrimental consequences associated with the increase in a MMR protein in human cancer. This study recognizes PMS2 elevation as a prognostic marker in pre-neoplastic and prostate cancer lesions. This result has significant implications for future diagnostic and treatment measures.


Assuntos
Adenocarcinoma/genética , Adenosina Trifosfatases/genética , Reparo de Erro de Pareamento de DNA , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Neoplasias da Próstata/genética , Proteínas Adaptadoras de Transdução de Sinal , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenosina Trifosfatases/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Masculino , Repetições de Microssatélites/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Prognóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
3.
DNA Repair (Amst) ; 6(3): 293-303, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17141577

RESUMO

The major eukaryotic mismatch repair (MMR) pathway requires Msh2-Msh6, which, like Escherichia coli MutS, binds to and participates in repair of the two most common replication errors, single base-base and single base insertion-deletion mismatches. For both types of mismatches, the side chain of E. coli Glu38 in a conserved Phe-X-Glu motif interacts with a mismatched base. The Ovarepsilon of Glu38 forms a hydrogen bond with either the N7 of purines or the N3 of pyrimidines. We show here that changing E. coli Glu38 to alanine results in nearly complete loss of repair of both single base-base and single base deletion mismatches. In contrast, a yeast strain with alanine replacing homologous Glu339 in Msh6 has nearly normal repair for insertion-deletion and most base-base mismatches, but is defective in repairing base-base mismatches characteristic of oxidative stress, e.g. 8-oxo-G.A mismatches. The results suggest that bacterial MutS and yeast Msh2-Msh6 differ in how they recognize and/or process replication errors involving undamaged bases, and that Glu339 in Msh6 may have a specialized role in repairing mismatches containing oxidized bases.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/química , Ácido Glutâmico/química , Proteínas de Saccharomyces cerevisiae/química , Motivos de Aminoácidos , Pareamento Incorreto de Bases , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Glutâmico/genética , Dados de Sequência Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Mutação , Fenótipo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Nucleic Acids Res ; 34(8): 2173-85, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16648361

RESUMO

We determined the molecular mechanism of cell death response by MutS homologs in distinction to the repair event. Key protein-DNA contacts differ in the interaction of MutS homologs with cisplatinated versus mismatched DNA. Mutational analyses of protein-DNA contacts, which were predicted by molecular dynamics (MD) simulations, were performed. Mutations in suggested interaction sites can affect repair and cell death response independently, and to different extents. A glutamate residue is identified as the key contact with cisplatin-DNA. Mutation of the residue increases cisplatin resistance due to increased non-specific DNA binding. In contrast, the conserved phenylalanine that is instrumental and indispensable for mismatch recognition during repair is not required for cisplatin cytotoxicity. These differences in protein-DNA interactions are translated into localized conformational changes that affect nucleotide requirements and inter-subunit interactions. Specifically, the ability for ATP binding/hydrolysis has little consequence for the MMR-dependent damage response. As a consequence, intersubunit contacts are altered that most likely affect the interaction with downstream proteins. We here describe the interaction of MutS homologs with DNA damage, as it differs from the interaction with a mismatch, and its structural translation into all other functional regions of the protein as a mechanism to initiate cell death response and concomitantly inhibit repair.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Adutos de DNA/química , Dano ao DNA , Proteínas de Escherichia coli/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Adenosina Trifosfatases/química , Apoptose , Sítios de Ligação , Cisplatino/química , Cisplatino/metabolismo , Adutos de DNA/metabolismo , Reparo do DNA , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Glutâmico/química , Modelos Moleculares , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteína 2 Homóloga a MutS/química , Mutação , Fenilalanina/química , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA