Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708339

RESUMO

Monitoring the diversity and distribution of species in an ecosystem is essential to assess the success of restoration strategies. Implementing biomonitoring methods, which provide a comprehensive assessment of species diversity and mitigate biases in data collection, holds significant importance in biodiversity research. Additionally, ensuring that these methods are cost-efficient and require minimal effort is crucial for effective environmental monitoring. In this study we compare the efficiency of species detection, the cost and the effort of two non-destructive sampling techniques: Baited Remote Underwater Video (BRUV) and environmental DNA (eDNA) metabarcoding to survey marine vertebrate species. Comparisons were conducted along the Sussex coast upon the introduction of the Nearshore Trawling Byelaw. This Byelaw aims to boost the recovery of the dense kelp beds and the associated biodiversity that existed in the 1980s. We show that overall BRUV surveys are more affordable than eDNA, however, eDNA detects almost three times as many species as BRUV. eDNA and BRUV surveys are comparable in terms of effort required for each method, unless eDNA analysis is carried out externally, in which case eDNA requires less effort for the lead researchers. Furthermore, we show that increased eDNA replication yields more informative results on community structure. We found that using both methods in conjunction provides a more complete view of biodiversity, with BRUV data supplementing eDNA monitoring by recording species missed by eDNA and by providing additional environmental and life history metrics. The results from this study will serve as a baseline of the marine vertebrate community in Sussex Bay allowing future biodiversity monitoring research projects to understand community structure as the ecosystem recovers following the removal of trawling fishing pressure. Although this study was regional, the findings presented herein have relevance to marine biodiversity and conservation monitoring programs around the globe.


Assuntos
Biodiversidade , DNA Ambiental , Monitoramento Ambiental , DNA Ambiental/análise , DNA Ambiental/genética , Animais , Monitoramento Ambiental/métodos , Organismos Aquáticos/genética , Gravação em Vídeo/métodos , Ecossistema , Código de Barras de DNA Taxonômico/métodos
2.
Int J Comput Assist Radiol Surg ; 19(6): 1185-1192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38627313

RESUMO

PURPOSE: The treatment of cardiovascular diseases requires complex and challenging navigation of a guidewire and catheter. This often leads to lengthy interventions during which the patient and clinician are exposed to X-ray radiation. Deep reinforcement learning approaches have shown promise in learning this task and may be the key to automating catheter navigation during robotized interventions. Yet, existing training methods show limited capabilities at generalizing to unseen vascular anatomies, requiring to be retrained each time the geometry changes. METHODS: In this paper, we propose a zero-shot learning strategy for three-dimensional autonomous endovascular navigation. Using a very small training set of branching patterns, our reinforcement learning algorithm is able to learn a control that can then be applied to unseen vascular anatomies without retraining. RESULTS: We demonstrate our method on 4 different vascular systems, with an average success rate of 95% at reaching random targets on these anatomies. Our strategy is also computationally efficient, allowing the training of our controller to be performed in only 2 h. CONCLUSION: Our training method proved its ability to navigate unseen geometries with different characteristics, thanks to a nearly shape-invariant observation space.


Assuntos
Procedimentos Endovasculares , Humanos , Procedimentos Endovasculares/métodos , Algoritmos , Imageamento Tridimensional , Aprendizado Profundo
3.
J Fish Biol ; 99(1): 186-196, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33625732

RESUMO

Fishing is the major threat to marine fish populations, particularly to higher trophic-level predators such as sharks. Many sharks, and other fish, are caught as commercial by-catch or for recreational purposes and then released; therefore, it is important to understand the effects of capture stress on their physiology and subsequent survival. Nonetheless, although important data have been collected for some sharks, there can be substantial interspecific differences, and the consequences of capture stress are still poorly understood for most species. In this study, the authors quantified the physiological effect of capture on four catshark species endemic to Southern Africa, which are regularly discarded as by-catch and targeted by recreational fisheries. Fifteen pyjama sharks, nine leopard sharks and nine shysharks were captured, and a blood sample was collected to measure their physiological response to capture stress. Stressed blood biochemistry was compared to samples obtained after the sharks recovered for 24 h in an underwater pen. Levels of pH and K+ were significantly lower, and lactate levels were significantly higher, in sharks immediately after capture stress compared to after the 24 h recovery period. Although the species showed a similar response to capture stress, they differed significantly in pH, K+ and lactate levels, and there was some evidence of size affecting the strength of the response to capture stress. The substantial physiological response elicited by even the relatively quick capture event in this study suggests that common fishing practices will have a stronger impact on catshark homeostasis because of longer hooking times and more disruptive fishing gear. Although the relationship between survival and physiological changes elicited by capture needs further investigation, the results provide further evidence that minimizing stress would be beneficial to maximize the survival of sharks and other fish following capture-and-release fishing practices.


Assuntos
Tubarões , Estresse Fisiológico , África Austral , Animais , Pesqueiros , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...