Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 12: 680596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248823

RESUMO

Sleepwalking has been conceptualized as deregulation between slow-wave sleep and arousal, with its occurrence in predisposed patients increasing following sleep deprivation. Recent evidence showed autonomic changes before arousals and somnambulistic episodes, suggesting that autonomic dysfunctions may contribute to the pathophysiology of sleepwalking. We investigated cardiac autonomic modulation during slow-wave sleep in sleepwalkers and controls during normal and recovery sleep following sleep deprivation. Fourteen adult sleepwalkers (5M; 28.1 ± 5.8 years) and 14 sex- and age-matched normal controls were evaluated by video-polysomnography for one baseline night and during recovery sleep following 25 h of sleep deprivation. Autonomic modulation was investigated with heart rate variability during participants' slow-wave sleep in their first and second sleep cycles. 5-min electrocardiographic segments from slow-wave sleep were analyzed to investigate low-frequency (LF) and high-frequency (HF) components of heart rate spectral decomposition. Group (sleepwalkers, controls) X condition (baseline, recovery) ANOVAs were performed to compare LF and HF in absolute and normalized units (nLF and nHF), and LF/HF ratio. When compared to controls, sleepwalkers' recovery slow-wave sleep showed lower LF/HF ratio and higher nHF during the first sleep cycle. In fact, compared to baseline recordings, sleepwalkers, but not controls, showed a significant decrease in nLF and LF/HF ratio as well as increased nHF during recovery slow-wave sleep during the first cycle. Although non-significant, similar findings with medium effect sizes were observed for absolute values (LF, HF). Patterns of autonomic modulation during sleepwalkers' recovery slow-wave sleep suggest parasympathetic dominance as compared to baseline sleep values and to controls. This parasympathetic predominance may be a marker of abnormal neural mechanisms underlying, or interfere with, the arousal processes and contribute to the pathophysiology of sleepwalking.

2.
Soc Cogn Affect Neurosci ; 8(1): 4-14, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22446298

RESUMO

Mindfulness meditation has been shown to promote emotional stability. Moreover, during the processing of aversive and self-referential stimuli, mindful awareness is associated with reduced medial prefrontal cortex (MPFC) activity, a central default mode network (DMN) component. However, it remains unclear whether mindfulness practice influences functional connectivity between DMN regions and, if so, whether such impact persists beyond a state of meditation. Consequently, this study examined the effect of extensive mindfulness training on functional connectivity within the DMN during a restful state. Resting-state data were collected from 13 experienced meditators (with over 1000 h of training) and 11 beginner meditators (with no prior experience, trained for 1 week before the study) using functional magnetic resonance imaging (fMRI). Pairwise correlations and partial correlations were computed between DMN seed regions' time courses and were compared between groups utilizing a Bayesian sampling scheme. Relative to beginners, experienced meditators had weaker functional connectivity between DMN regions involved in self-referential processing and emotional appraisal. In addition, experienced meditators had increased connectivity between certain DMN regions (e.g. dorso-medial PFC and right inferior parietal lobule), compared to beginner meditators. These findings suggest that meditation training leads to functional connectivity changes between core DMN regions possibly reflecting strengthened present-moment awareness.


Assuntos
Atenção/fisiologia , Conscientização/fisiologia , Meditação/métodos , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Adaptação Psicológica/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Prática Psicológica , Autoimagem
3.
Neuroimage ; 57(4): 1524-33, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21679770

RESUMO

There is mounting evidence that mindfulness meditation is beneficial for the treatment of mood and anxiety disorders, yet little is known regarding the neural mechanisms through which mindfulness modulates emotional responses. Thus, a central objective of this functional magnetic resonance imaging study was to investigate the effects of mindfulness on the neural responses to emotionally laden stimuli. Another major goal of this study was to examine the impact of the extent of mindfulness training on the brain mechanisms supporting the processing of emotional stimuli. Twelve experienced (with over 1000 h of practice) and 10 beginner meditators were scanned as they viewed negative, positive, and neutral pictures in a mindful state and a non-mindful state of awareness. Results indicated that the Mindful condition attenuated emotional intensity perceived from pictures, while brain imaging data suggested that this effect was achieved through distinct neural mechanisms for each group of participants. For experienced meditators compared with beginners, mindfulness induced a deactivation of default mode network areas (medial prefrontal and posterior cingulate cortices) across all valence categories and did not influence responses in brain regions involved in emotional reactivity during emotional processing. On the other hand, for beginners relative to experienced meditators, mindfulness induced a down-regulation of the left amygdala during emotional processing. These findings suggest that the long-term practice of mindfulness leads to emotional stability by promoting acceptance of emotional states and enhanced present-moment awareness, rather than by eliciting control over low-level affective cerebral systems from higher-order cortical brain regions. These results have implications for affect-related psychological disorders.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Emoções/fisiologia , Meditação/psicologia , Adulto , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA