Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Brain ; 146(12): 5086-5097, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977818

RESUMO

Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering. We studied a large four-generation family in which persistent stuttering was inherited in an autosomal dominant manner with disruption of the cortico-basal-ganglia-thalamo-cortical network found on imaging. Exome sequencing of three affected family members revealed the PPID c.808C>T (p.Pro270Ser) variant that segregated with stuttering in the family. We generated a Ppid p.Pro270Ser knock-in mouse model and performed ex vivo imaging to assess for brain changes. Diffusion-weighted MRI in the mouse revealed significant microstructural changes in the left corticospinal tract, as previously implicated in stuttering. Quantitative susceptibility mapping also detected changes in cortico-striatal-thalamo-cortical loop tissue composition, consistent with findings in affected family members. This is the first report to implicate a chaperone protein in the pathogenesis of stuttering. The humanized Ppid murine model recapitulates network findings observed in affected family members.


Assuntos
Gagueira , Humanos , Animais , Camundongos , Gagueira/genética , Gagueira/patologia , Peptidil-Prolil Isomerase F , Fala , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mapeamento Encefálico
2.
Brain ; 145(3): 1177-1188, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35296891

RESUMO

Developmental stuttering is a condition of speech dysfluency, characterized by pauses, blocks, prolongations and sound or syllable repetitions. It affects around 1% of the population, with potential detrimental effects on mental health and long-term employment. Accumulating evidence points to a genetic aetiology, yet gene-brain associations remain poorly understood due to a lack of MRI studies in affected families. Here we report the first neuroimaging study of developmental stuttering in a family with autosomal dominant inheritance of persistent stuttering. We studied a four-generation family, 16 family members were included in genotyping analysis. T1-weighted and diffusion-weighted MRI scans were conducted on seven family members (six male; aged 9-63 years) with two age and sex matched controls without stuttering (n = 14). Using Freesurfer, we analysed cortical morphology (cortical thickness, surface area and local gyrification index) and basal ganglia volumes. White matter integrity in key speech and language tracts (i.e. frontal aslant tract and arcuate fasciculus) was also analysed using MRtrix and probabilistic tractography. We identified a significant age by group interaction effect for cortical thickness in the left hemisphere pars opercularis (Broca's area). In affected family members this region failed to follow the typical trajectory of age-related thinning observed in controls. Surface area analysis revealed the middle frontal gyrus region was reduced bilaterally in the family (all cortical morphometry significance levels set at a vertex-wise threshold of P < 0.01, corrected for multiple comparisons). Both the left and right globus pallidus were larger in the family than in the control group (left P = 0.017; right P = 0.037), and a larger right globus pallidus was associated with more severe stuttering (rho = 0.86, P = 0.01). No white matter differences were identified. Genotyping identified novel loci on chromosomes 1 and 4 that map with the stuttering phenotype. Our findings denote disruption within the cortico-basal ganglia-thalamo-cortical network. The lack of typical development of these structures reflects the anatomical basis of the abnormal inhibitory control network between Broca's area and the striatum underpinning stuttering in these individuals. This is the first evidence of a neural phenotype in a family with an autosomal dominantly inherited stuttering.


Assuntos
Gagueira , Substância Branca , Área de Broca/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética , Masculino , Gagueira/diagnóstico por imagem , Gagueira/genética
3.
Mol Psychiatry ; 26(7): 3004-3017, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33057169

RESUMO

Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40-60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment, and fluid intelligence, testing them for association with dyslexia status in our sample. We observed statistically significant (p < 2.8 × 10-6) enrichment of associations at the gene level, for LOC388780 (20p13; uncharacterized gene), and for VEPH1 (3q25), a gene implicated in brain development. We estimated an SNP-based heritability of 20-25% for DD, and observed significant associations of dyslexia risk with PGSs for attention deficit hyperactivity disorder (at pT = 0.05 in the training GWAS: OR = 1.23[1.16; 1.30] per standard deviation increase; p = 8 × 10-13), bipolar disorder (1.53[1.44; 1.63]; p = 1 × 10-43), schizophrenia (1.36[1.28; 1.45]; p = 4 × 10-22), psychiatric cross-disorder susceptibility (1.23[1.16; 1.30]; p = 3 × 10-12), cortical thickness of the transverse temporal gyrus (0.90[0.86; 0.96]; p = 5 × 10-4), educational attainment (0.86[0.82; 0.91]; p = 2 × 10-7), and intelligence (0.72[0.68; 0.76]; p = 9 × 10-29). This study suggests an important contribution of common genetic variants to dyslexia risk, and novel genomic overlaps with psychiatric conditions like bipolar disorder, schizophrenia, and cross-disorder susceptibility. Moreover, it revealed the presence of shared genetic foundations with a neural correlate previously implicated in dyslexia by neuroimaging evidence.


Assuntos
Dislexia , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Transtorno do Deficit de Atenção com Hiperatividade/genética , Dislexia/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética
4.
Nat Commun ; 11(1): 3150, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561755

RESUMO

MLKL is the essential effector of necroptosis, a form of programmed lytic cell death. We have isolated a mouse strain with a single missense mutation, MlklD139V, that alters the two-helix 'brace' that connects the killer four-helix bundle and regulatory pseudokinase domains. This confers constitutive, RIPK3 independent killing activity to MLKL. Homozygous mutant mice develop lethal postnatal inflammation of the salivary glands and mediastinum. The normal embryonic development of MlklD139V homozygotes until birth, and the absence of any overt phenotype in heterozygotes provides important in vivo precedent for the capacity of cells to clear activated MLKL. These observations offer an important insight into the potential disease-modulating roles of three common human MLKL polymorphisms that encode amino acid substitutions within or adjacent to the brace region. Compound heterozygosity of these variants is found at up to 12-fold the expected frequency in patients that suffer from a pediatric autoinflammatory disease, chronic recurrent multifocal osteomyelitis (CRMO).


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Sistema Hematopoético/patologia , Necroptose/genética , Proteínas Quinases/genética , Animais , Animais Recém-Nascidos , Doenças Hereditárias Autoinflamatórias , Humanos , Inflamação/genética , Camundongos , Mutação de Sentido Incorreto , Osteomielite/genética , Proteínas Quinases/metabolismo
5.
Neurology ; 94(20): e2148-e2167, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32345733

RESUMO

OBJECTIVE: Determining the genetic basis of speech disorders provides insight into the neurobiology of human communication. Despite intensive investigation over the past 2 decades, the etiology of most speech disorders in children remains unexplained. To test the hypothesis that speech disorders have a genetic etiology, we performed genetic analysis of children with severe speech disorder, specifically childhood apraxia of speech (CAS). METHODS: Precise phenotyping together with research genome or exome analysis were performed on children referred with a primary diagnosis of CAS. Gene coexpression and gene set enrichment analyses were conducted on high-confidence gene candidates. RESULTS: Thirty-four probands ascertained for CAS were studied. In 11/34 (32%) probands, we identified highly plausible pathogenic single nucleotide (n = 10; CDK13, EBF3, GNAO1, GNB1, DDX3X, MEIS2, POGZ, SETBP1, UPF2, ZNF142) or copy number (n = 1; 5q14.3q21.1 locus) variants in novel genes or loci for CAS. Testing of parental DNA was available for 9 probands and confirmed that the variants had arisen de novo. Eight genes encode proteins critical for regulation of gene transcription, and analyses of transcriptomic data found CAS-implicated genes were highly coexpressed in the developing human brain. CONCLUSION: We identify the likely genetic etiology in 11 patients with CAS and implicate 9 genes for the first time. We find that CAS is often a sporadic monogenic disorder, and highly genetically heterogeneous. Highly penetrant variants implicate shared pathways in broad transcriptional regulation, highlighting the key role of transcriptional regulation in normal speech development. CAS is a distinctive, socially debilitating clinical disorder, and understanding its molecular basis is the first step towards identifying precision medicine approaches.


Assuntos
Apraxias/genética , Distúrbios da Fala/genética , Fala/fisiologia , Fatores de Transcrição/genética , Adolescente , Apraxias/diagnóstico , Apraxias/fisiopatologia , Criança , Pré-Escolar , Feminino , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Estudos de Associação Genética , Humanos , Masculino , Distúrbios da Fala/diagnóstico , Distúrbios da Fala/fisiopatologia
6.
Genet Med ; 21(11): 2532-2542, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31036918

RESUMO

PURPOSE: The purpose of this study was to expand the genetic architecture of neurodevelopmental disorders, and to characterize the clinical features of a novel cohort of affected individuals with variants in ZNF142, a C2H2 domain-containing transcription factor. METHODS: Four independent research centers used exome sequencing to elucidate the genetic basis of neurodevelopmental phenotypes in four unrelated families. Following bioinformatic filtering, query of control data sets, and secondary variant confirmation, we aggregated findings using an online data sharing platform. We performed in-depth clinical phenotyping in all affected individuals. RESULTS: We identified seven affected females in four pedigrees with likely pathogenic variants in ZNF142 that segregate with recessive disease. Affected cases in three families harbor either nonsense or frameshifting likely pathogenic variants predicted to undergo nonsense mediated decay. One additional trio bears ultrarare missense variants in conserved regions of ZNF142 that are predicted to be damaging to protein function. We performed clinical comparisons across our cohort and noted consistent presence of intellectual disability and speech impairment, with variable manifestation of seizures, tremor, and dystonia. CONCLUSION: Our aggregate data support a role for ZNF142 in nervous system development and add to the emergent list of zinc finger proteins that contribute to neurocognitive disorders.


Assuntos
Deficiências do Desenvolvimento/genética , Transtornos do Neurodesenvolvimento/genética , Transativadores/genética , Adolescente , Adulto , Criança , Estudos de Coortes , Biologia Computacional/métodos , Distonia/genética , Família , Feminino , Humanos , Deficiência Intelectual/genética , Mutação , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Convulsões/genética , Distúrbios da Fala/genética , Transativadores/metabolismo , Sequenciamento do Exoma
7.
Transl Psychiatry ; 9(1): 77, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741946

RESUMO

Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562-3468). We observed a genome-wide significant effect (p < 1 × 10-8) on rapid automatized naming of letters (RANlet) for variants on 18q12.2, within MIR924HG (micro-RNA 924 host gene; rs17663182 p = 4.73 × 10-9), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation transporter; rs16928927, p = 2.25 × 10-8). rs17663182 (18q12.2) also showed genome-wide significant multivariate associations with RAN measures (p = 1.15 × 10-8) and with all the cognitive traits tested (p = 3.07 × 10-8), suggesting (relational) pleiotropic effects of this variant. A polygenic risk score (PRS) analysis revealed significant genetic overlaps of some of the DD-related traits with educational attainment (EDUyears) and ADHD. Reading and spelling abilities were positively associated with EDUyears (p ~ [10-5-10-7]) and negatively associated with ADHD PRS (p ~ [10-8-10-17]). This corroborates a long-standing hypothesis on the partly shared genetic etiology of DD and ADHD, at the genome-wide level. Our findings suggest new candidate DD susceptibility genes and provide new insights into the genetics of dyslexia and its comorbities.


Assuntos
Cognição , Dislexia/genética , Dislexia/psicologia , Adolescente , Adulto , Criança , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Adulto Jovem
8.
Mol Psychiatry ; 24(7): 1065-1078, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29463886

RESUMO

Genetic investigations of people with impaired development of spoken language provide windows into key aspects of human biology. Over 15 years after FOXP2 was identified, most speech and language impairments remain unexplained at the molecular level. We sequenced whole genomes of nineteen unrelated individuals diagnosed with childhood apraxia of speech, a rare disorder enriched for causative mutations of large effect. Where DNA was available from unaffected parents, we discovered de novo mutations, implicating genes, including CHD3, SETD1A and WDR5. In other probands, we identified novel loss-of-function variants affecting KAT6A, SETBP1, ZFHX4, TNRC6B and MKL2, regulatory genes with links to neurodevelopment. Several of the new candidates interact with each other or with known speech-related genes. Moreover, they show significant clustering within a single co-expression module of genes highly expressed during early human brain development. This study highlights gene regulatory pathways in the developing brain that may contribute to acquisition of proficient speech.


Assuntos
Apraxias/genética , Encéfalo/embriologia , Fala/fisiologia , Apraxias/fisiopatologia , Encéfalo/metabolismo , Proteínas de Transporte/genética , DNA Helicases/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Histona Acetiltransferases/genética , Histona-Lisina N-Metiltransferase/genética , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Distúrbios da Fala/genética , Distúrbios da Fala/fisiopatologia , Fatores de Transcrição/genética
9.
Nat Genet ; 49(4): 559-567, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28250457

RESUMO

Idiopathic juxtafoveal retinal telangiectasis type 2 (macular telangiectasia type 2; MacTel) is a rare neurovascular degenerative retinal disease. To identify genetic susceptibility loci for MacTel, we performed a genome-wide association study (GWAS) with 476 cases and 1,733 controls of European ancestry. Genome-wide significant associations (P < 5 × 10-8) were identified at three independent loci (rs73171800 at 5q14.3, P = 7.74 × 10-17; rs715 at 2q34, P = 9.97 × 10-14; rs477992 at 1p12, P = 2.60 × 10-12) and then replicated (P < 0.01) in an independent cohort of 172 cases and 1,134 controls. The 5q14.3 locus is known to associate with variation in retinal vascular diameter, and the 2q34 and 1p12 loci have been implicated in the glycine/serine metabolic pathway. We subsequently found significant differences in blood serum levels of glycine (P = 4.04 × 10-6) and serine (P = 2.48 × 10-4) between MacTel cases and controls.


Assuntos
Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Telangiectasia Retiniana/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Loci Gênicos/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , População Branca/genética , Adulto Jovem
10.
Dev Med Child Neurol ; 56(4): 346-53, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24117048

RESUMO

AIM: Sex chromosome aneuploidies increase the risk of spoken or written language disorders but individuals with specific language impairment (SLI) or dyslexia do not routinely undergo cytogenetic analysis. We assess the frequency of sex chromosome aneuploidies in individuals with language impairment or dyslexia. METHOD: Genome-wide single nucleotide polymorphism genotyping was performed in three sample sets: a clinical cohort of individuals with speech and language deficits (87 probands: 61 males, 26 females; age range 4 to 23 years), a replication cohort of individuals with SLI, from both clinical and epidemiological samples (209 probands: 139 males, 70 females; age range 4 to 17 years), and a set of individuals with dyslexia (314 probands: 224 males, 90 females; age range 7 to 18 years). RESULTS: In the clinical language-impaired cohort, three abnormal karyotypic results were identified in probands (proband yield 3.4%). In the SLI replication cohort, six abnormalities were identified providing a consistent proband yield (2.9%). In the sample of individuals with dyslexia, two sex chromosome aneuploidies were found giving a lower proband yield of 0.6%. In total, two XYY, four XXY (Klinefelter syndrome), three XXX, one XO (Turner syndrome), and one unresolved karyotype were identified. INTERPRETATION: The frequency of sex chromosome aneuploidies within each of the three cohorts was increased over the expected population frequency (approximately 0.25%) suggesting that genetic testing may prove worthwhile for individuals with language and literacy problems and normal non-verbal IQ. Early detection of these aneuploidies can provide information and direct the appropriate management for individuals.


Assuntos
Aneuploidia , Dislexia/epidemiologia , Dislexia/genética , Transtornos do Desenvolvimento da Linguagem/epidemiologia , Transtornos do Desenvolvimento da Linguagem/genética , Cromossomos Sexuais , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Genótipo , Humanos , Cariotipagem , Masculino , Idade Paterna , Polimorfismo de Nucleotídeo Único , Prevalência , Adulto Jovem
11.
PLoS Genet ; 9(9): e1003751, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24068947

RESUMO

Humans display structural and functional asymmetries in brain organization, strikingly with respect to language and handedness. The molecular basis of these asymmetries is unknown. We report a genome-wide association study meta-analysis for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)] (n = 728). The most strongly associated variant, rs7182874 (P = 8.68 × 10(-9)), is located in PCSK6, further supporting an association we previously reported. We also confirmed the specificity of this association in individuals with RD; the same locus was not associated with relative hand skill in a general population cohort (n = 2,666). As PCSK6 is known to regulate NODAL in the development of left/right (LR) asymmetry in mice, we developed a novel approach to GWAS pathway analysis, using gene-set enrichment to test for an over-representation of highly associated variants within the orthologs of genes whose disruption in mice yields LR asymmetry phenotypes. Four out of 15 LR asymmetry phenotypes showed an over-representation (FDR ≤ 5%). We replicated three of these phenotypes; situs inversus, heterotaxia, and double outlet right ventricle, in the general population cohort (FDR ≤ 5%). Our findings lead us to propose that handedness is a polygenic trait controlled in part by the molecular mechanisms that establish LR body asymmetry early in development.


Assuntos
Dislexia/genética , Lateralidade Funcional/genética , Estudo de Associação Genômica Ampla , Herança Multifatorial/genética , Animais , Padronização Corporal/genética , Encéfalo/fisiopatologia , Humanos , Camundongos , Pró-Proteína Convertases/genética , Serina Endopeptidases/genética
12.
J Pathol ; 229(4): 621-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23208944

RESUMO

Diffuse gastric cancers typically present as late-stage tumours and, as a result, the 5 year survival rate is poor. Some gastric cancers are hereditary and these tend to be of the diffuse type; 30-40% of hereditary diffuse gastric cancers (HDGCs) can be explained by defective germline alleles of E-cadherin (CDH1), but for the remaining families the factors driving susceptibility remain unknown. We had access to a large HDGC pedigree with no obvious mutation in CDH1, and applied exome sequencing to identify new genes involved in gastric cancer. We identified a germline truncating allele of α-E-catenin (CTNNA1) that was present in two family members with invasive diffuse gastric cancer and four in which intramucosal signet ring cells were detected as part of endoscopic surveillance. The remaining CTNNA1 allele was silenced in the two diffuse gastric cancers from the family that were available for screening, and this was also true for signet ring cells identified in endoscopic biopsies. Since α-E-catenin functions in the same complex as E-cadherin, our results call attention to the broader signalling network surrounding these proteins in HDGC. We also detected somatic mutations in one tumour and found substantial overlap with genes mutated in sporadic gastric cancer, including PIK3CA, ARID1A, MED12 and MED23.


Assuntos
Caderinas/genética , Polimorfismo Genético/genética , Transdução de Sinais , Neoplasias Gástricas/genética , alfa Catenina/genética , Idoso , Alelos , Sequência de Aminoácidos , Antígenos CD , Caderinas/metabolismo , DNA de Neoplasias/genética , Exoma , Feminino , Biblioteca Gênica , Ligação Genética , Predisposição Genética para Doença , Genótipo , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Análise de Sequência de DNA , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , alfa Catenina/metabolismo
13.
PLoS One ; 7(11): e50321, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209710

RESUMO

Independent studies have shown that candidate genes for dyslexia and specific language impairment (SLI) impact upon reading/language-specific traits in the general population. To further explore the effect of disorder-associated genes on cognitive functions, we investigated whether they play a role in broader cognitive traits. We tested a panel of dyslexia and SLI genetic risk factors for association with two measures of general cognitive abilities, or IQ, (verbal and non-verbal) in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort (N>5,000). Only the MRPL19/C2ORF3 locus showed statistically significant association (minimum P = 0.00009) which was further supported by independent replications following analysis in four other cohorts. In addition, a fifth independent sample showed association between the MRPL19/C2ORF3 locus and white matter structure in the posterior part of the corpus callosum and cingulum, connecting large parts of the cortex in the parietal, occipital and temporal lobes. These findings suggest that this locus, originally identified as being associated with dyslexia, is likely to harbour genetic variants associated with general cognitive abilities by influencing white matter structure in localised neuronal regions.


Assuntos
Encéfalo/fisiologia , Cromossomos Humanos Par 2/ultraestrutura , Cognição/fisiologia , Dislexia/genética , Adolescente , Adulto , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Estudos de Coortes , Diagnóstico por Imagem/métodos , Dislexia/fisiopatologia , Feminino , Genótipo , Haplótipos , Humanos , Testes de Inteligência , Idioma , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Modelos Estatísticos , Neurônios/metabolismo , Fases de Leitura Aberta , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Risco
14.
Hum Mol Genet ; 20(3): 608-14, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21051773

RESUMO

Approximately 90% of humans are right-handed. Handedness is a heritable trait, yet the genetic basis is not well understood. Here we report a genome-wide association study for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)]. The most highly associated marker, rs11855415 (P = 4.7 × 10(-7)), is located within PCSK6. Two independent cohorts with RD show the same trend, with the minor allele conferring greater relative right-hand skill. Meta-analysis of all three RD samples is genome-wide significant (n = 744, P = 2.0 × 10(-8)). Conversely, in the general population (n = 2666), we observe a trend towards reduced laterality of hand skill for the minor allele (P = 0.0020). These results provide molecular evidence that cerebral asymmetry and dyslexia are linked. Furthermore, PCSK6 is a protease that cleaves the left-right axis determining protein NODAL. Functional studies of PCSK6 promise insights into mechanisms underlying cerebral lateralization and dyslexia.


Assuntos
Dominância Cerebral/genética , Dislexia/genética , Lateralidade Funcional/genética , Estudo de Associação Genômica Ampla , Humanos , Proteína Nodal/metabolismo
15.
PLoS One ; 5(10): e13712, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21060895

RESUMO

BACKGROUND: Six independent studies have identified linkage to chromosome 18 for developmental dyslexia or general reading ability. Until now, no candidate genes have been identified to explain this linkage. Here, we set out to identify the gene(s) conferring susceptibility by a two stage strategy of linkage and association analysis. METHODOLOGY/PRINCIPAL FINDINGS: Linkage analysis: 264 UK families and 155 US families each containing at least one child diagnosed with dyslexia were genotyped with a dense set of microsatellite markers on chromosome 18. Association analysis: Using a discovery sample of 187 UK families, nearly 3000 SNPs were genotyped across the chromosome 18 dyslexia susceptibility candidate region. Following association analysis, the top ranking SNPs were then genotyped in the remaining samples. The linkage analysis revealed a broad signal that spans approximately 40 Mb from 18p11.2 to 18q12.2. Following the association analysis and subsequent replication attempts, we observed consistent association with the same SNPs in three genes; melanocortin 5 receptor (MC5R), dymeclin (DYM) and neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L). CONCLUSIONS: Along with already published biological evidence, MC5R, DYM and NEDD4L make attractive candidates for dyslexia susceptibility genes. However, further replication and functional studies are still required.


Assuntos
Cromossomos Humanos Par 18 , Dislexia/genética , Predisposição Genética para Doença , Ligação Genética , Humanos , Polimorfismo de Nucleotídeo Único
16.
Biol Psychiatry ; 68(4): 320-8, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20346443

RESUMO

BACKGROUND: Autism spectrum disorders (ASDs) are characterized by social, communication, and behavioral deficits and complex genetic etiology. A recent study of 517 ASD families implicated DOCK4 by single nucleotide polymorphism (SNP) association and a microdeletion in an affected sibling pair. METHODS: The DOCK4 microdeletion on 7q31.1 was further characterized in this family using QuantiSNP analysis of 1M SNP array data and reverse transcription polymerase chain reaction. Extended family members were tested by polymerase chain reaction amplification of junction fragments. DOCK4 dosage was measured in additional samples using SNP arrays. Since QuantiSNP analysis identified a novel CNTNAP5 microdeletion in the same affected sibling pair, this gene was sequenced in 143 additional ASD families. Further polymerase chain reaction-restriction fragment length polymorphism analysis included 380 ASD cases and suitable control subjects. RESULTS: The maternally inherited microdeletion encompassed chr7:110,663,978-111,257,682 and led to a DOCK4-IMMP2L fusion transcript. It was also detected in five extended family members with no ASD. However, six of nine individuals with this microdeletion had poor reading ability, which prompted us to screen 606 other dyslexia cases. This led to the identification of a second DOCK4 microdeletion co-segregating with dyslexia. Assessment of genomic background in the original ASD family detected a paternal 2q14.3 microdeletion disrupting CNTNAP5 that was also transmitted to both affected siblings. Analysis of other ASD cohorts revealed four additional rare missense changes in CNTNAP5. No exonic deletions of DOCK4 or CNTNAP5 were seen in 2091 control subjects. CONCLUSIONS: This study highlights two new risk factors for ASD and dyslexia and demonstrates the importance of performing a high-resolution assessment of genomic background, even after detection of a rare and likely damaging microdeletion using a targeted approach.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Transtornos Globais do Desenvolvimento Infantil/genética , Dislexia/genética , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , DNA/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único , Valores de Referência , Deleção de Sequência , Índice de Gravidade de Doença , Transcrição Gênica
17.
Eur Child Adolesc Psychiatry ; 19(3): 179-97, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20091194

RESUMO

Developmental dyslexia is a highly heritable disorder with a prevalence of at least 5% in school-aged children. Linkage studies have identified numerous loci throughout the genome that are likely to harbour candidate dyslexia susceptibility genes. Association studies and the refinement of chromosomal translocation break points in individuals with dyslexia have resulted in the discovery of candidate genes at some of these loci. A key function of many of these genes is their involvement in neuronal migration. This complements anatomical abnormalities discovered in dyslexic brains, such as ectopias, that may be the result of irregular neuronal migration.


Assuntos
Doenças em Gêmeos/genética , Dislexia/genética , Adolescente , Fatores Etários , Criança , Mapeamento Cromossômico , Comorbidade , Doenças em Gêmeos/diagnóstico , Doenças em Gêmeos/psicologia , Dislexia/diagnóstico , Dislexia/psicologia , Predisposição Genética para Doença/genética , Predisposição Genética para Doença/psicologia , Variação Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Inteligência , Fenótipo , Leitura
18.
PLoS Genet ; 5(3): e1000436, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19325871

RESUMO

Numerous genetic association studies have implicated the KIAA0319 gene on human chromosome 6p22 in dyslexia susceptibility. The causative variant(s) remains unknown but may modulate gene expression, given that (1) a dyslexia-associated haplotype has been implicated in the reduced expression of KIAA0319, and (2) the strongest association has been found for the region spanning exon 1 of KIAA0319. Here, we test the hypothesis that variant(s) responsible for reduced KIAA0319 expression resides on the risk haplotype close to the gene's transcription start site. We identified seven single-nucleotide polymorphisms on the risk haplotype immediately upstream of KIAA0319 and determined that three of these are strongly associated with multiple reading-related traits. Using luciferase-expressing constructs containing the KIAA0319 upstream region, we characterized the minimal promoter and additional putative transcriptional regulator regions. This revealed that the minor allele of rs9461045, which shows the strongest association with dyslexia in our sample (max p-value = 0.0001), confers reduced luciferase expression in both neuronal and non-neuronal cell lines. Additionally, we found that the presence of this rs9461045 dyslexia-associated allele creates a nuclear protein-binding site, likely for the transcriptional silencer OCT-1. Knocking down OCT-1 expression in the neuronal cell line SHSY5Y using an siRNA restores KIAA0319 expression from the risk haplotype to nearly that seen from the non-risk haplotype. Our study thus pinpoints a common variant as altering the function of a dyslexia candidate gene and provides an illustrative example of the strategic approach needed to dissect the molecular basis of complex genetic traits.


Assuntos
Dislexia/genética , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Sítios de Ligação , Linhagem Celular , Regulação para Baixo/genética , Haplótipos , Humanos , Neurônios , Fator 1 de Transcrição de Octâmero/genética , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...