Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 220, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36639394

RESUMO

Covalent crystals such as diamonds are a class of fascinating materials that are challenging to fabricate in the form of thin films. This is because spatial kinetic control of bond formation is required to create covalently bonded crystal films. Directional crystal growth is commonly achieved by chemical vapor deposition, an approach that is hampered by technical complexity and associated high cost. Here we report on a liquid-liquid interfacial approach based on physical-organic considerations to synthesize an ultrathin covalent crystal film. By distributing reactants into separate phases using hydrophobicity, the chemical reaction is confined to an interface that orients the crystal growth. A molecular-smooth interface combined with in-plane isotropic conditions enables the synthesis of films on a centimeter size scale with a uniform thickness of 13 nm. The film exhibits considerable mechanical robustness enabling a free-standing length of 37 µm, as well as a clearly anisotropic chemical structure and crystal lattice alignment.

2.
J Am Chem Soc ; 144(35): 16093-16100, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36007228

RESUMO

Two-dimensional covalent organic frameworks (2D COFs) feature graphene-type 2D layered sheets but with a tunable structure, electroactivity, and high porosity. If these traits are well-combined, then 2D COFs can be applied in electronics to realize functions with a high degree of complexity. Here, a highly crystalline electroactive COF, BDFamide-Tp, was designed and synthesized. It shows regularly distributed pores with a width of 1.35 nm. Smooth and successive films of such a COF were fabricated and found to be able to increase the conductivity of an organic semiconductor by 103 by interfacial doping. Upon encapsulation of a photoswitchable molecule (spiropyran) into the voids of the COF layer, the resulted devices respond differently to light of different wavelengths. Specifically, the current output ratio after UV vs Vis illumination reaches 100 times, thus effectively creating on and off states. The respective positive and negative feedbacks are memorized by the device and can be reprogrammed by UV/Vis illumination. The reversible photostimulus responsivity and reliable memory of the device are derived from the combination of electroactivity and porosity of the 2D COF. This work shows the capability of 2D COFs in higher-level electronic functions and extends their possible applications in information storage.

3.
J Phys Chem C Nanomater Interfaces ; 126(18): 7965-7972, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35592736

RESUMO

Strong exciton-photon coupling exhibits the possibility to modify the photophysical properties of organic molecules. This is due to the introduction of hybrid light-matter states, called polaritons, which have unique physical and optical properties. Those strongly coupled systems provide altered excited-state dynamics in comparison to the bare molecule case. In this study, we investigate the interplay between polaritonic and molecular trap states, such as excimers. The molecules used in this study show either prompt or delayed emission from trap states. For both cases, a clear dependency on the exciton-photon energy tuning was observed. Polaritonic emission gradually increased with a concurrent removal of aggregation-induced emission when the systems were tuned toward lower energies. For prompt emission, it is not clear whether the experimental results are best explained by a predominant relaxation toward the lower polariton after excitation or by a direct excimer to polariton transition. However, for the delayed emission case, trap states are formed on the initially formed triplet manifold, making it evident that an excimer-to-polariton transition has occurred. These results unveil the possibility to control the trap state population by creating a strongly coupled system, which may form a mitigation strategy to counteract detrimental trap states in photonic applications.

4.
J Org Chem ; 87(5): 2569-2579, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35188769

RESUMO

In the field of fluorescent dyes, difluoroboron-dipyrromethenes (BODIPY) have a highly respected position. To predict their photophysical properties prior to synthesis and therefore to successfully design molecules specifically for one's needs, a solid structure-function understanding based on experimental observations is vital. This work delivers a photophysical evaluation of BODIPY and aza-BODIPY derivatives equipped with different electron-withdrawing/-donating substituents. Using combinatorial chemistry, pyrroles substituted with electron-donating/-withdrawing substituents were condensed together in two different manners, thus providing two sets of molecules. The only difference between the two sets is the bridging unit providing a so far lacking comparison between BODIPYs and aza-BODIPYs structural homologues. Replacing the meso-methine bridge with an aza-N bridge results in a red-shifted transition and considerably different, temperature-activated, excited-state relaxation pathways. The effect of electron-donating units on the absorption but not emission for BODIPYs was suppressed compared to aza-BODIPYs. This result could be evident in a substitution pattern-dependent Stokes shift. The outlook of this study is a deeper understanding of the structure-optics relationship of the (aza)-BODIPY-dye class, leading to an improvement in the de novo design of tailor-made molecules for future applications.


Assuntos
Corantes Fluorescentes , Pirróis , Compostos de Boro , Corantes Fluorescentes/química , Pirróis/química
5.
Small ; 17(40): e2103152, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34494364

RESUMO

Here an all-carbon linked 3D covalent organic framework (COF) is introduced by employing a templated surface reaction in a continuous flow (TSRCF). The presented method of synthesis provides spatial control over the reaction chemistry and allows for the creation of ultrasmooth COF films of desired thickness and significant crystallinity. The films show high electrical conductivity (≈3.4 S m-1 ) after being doped with tetracyanoquinodimethane (TCNQ), setting a new record for 3D COF materials. The concurrence of 3D nanosized channels and high conductivity opens up for a number of hitherto unexplored applications for this class of materials, such as high surface area electrodes, electrochemical transistors, and for electronic sensing.

6.
Chemistry ; 26(63): 14295-14299, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32809249

RESUMO

Intermolecular interactions play a crucial role in materials chemistry because they govern thin film morphology. The photophysical properties of films of organic dyes are highly sensitive to the local environment, and a considerable effort has therefore been dedicated to engineering the morphology of organic thin films. Solubilizing side chains can successfully spatially separate chromophores, reducing detrimental intermolecular interactions. However, this strategy is also significantly decreasing achievable dye concentration. Here, five BODIPY derivatives containing small alkyl chains in the α-position were synthesized and photophysically characterized. By blending two or more derivatives, the increase in entropy reduces aggregation and therefore produces films with extreme dye concentration and, at the same time almost solution like absorption properties. Such a film was placed inside an optical cavity and the achieved system was demonstrated to reach the strong exciton-photon coupling regime by virtue of the achieved dye concentration and sharp absorption features of the film.

7.
Chempluschem ; 83(12): 1169-1178, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31950711

RESUMO

A stiff-stilbene-linked bisporphyrin tweezer with inherent helicity was used for exciton-coupled circular dichroism (ECCD) characterization of a series of monotopically binding amine guest molecules. CD signals were observed for a variety of monoamines at relatively low tweezer/amine (host/guest) ratios between 1 : 10 to 1 : 70. For the amines producing the most intense CD signals, a binding stoichiometry of 1 : 2 was found. A likely explanation is the presence of guest-guest interactions in the complexes. This is supported by the correlation observed between CD signal intensity and magnitude of possible noncovalent binding between the guests, which can be divided into three groups showing no, moderate and strong response, respectively. Further support for this rationalization comes from molecular modelling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...