Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 201, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711091

RESUMO

PURPOSE: The rising burden of mosquito-borne diseases in Europe extends beyond urban areas, encompassing rural and semi-urban regions near managed and natural wetlands evidenced by recent outbreaks of Usutu and West Nile viruses. While wetland management policies focus on biodiversity and ecosystem services, few studies explore the impact on mosquito vectors. METHODS: Our research addresses this gap, examining juvenile mosquito and aquatic predator communities in 67 ditch sites within a South England coastal marsh subjected to different wetland management tiers. Using joint distribution models, we analyse how mosquito communities respond to abiotic and biotic factors influenced by wetland management. RESULTS: Of the 12 mosquito species identified, Culiseta annulata (Usutu virus vector) and Culex pipiens (Usutu and West Nile virus vector) constitute 47% of 6825 larval mosquitoes. Abundant predators include Coleoptera (water beetles) adults, Corixidae (water boatmen) and Zygoptera (Damselfy) larvae. Models reveal that tier 3 management sites (higher winter water levels, lower agricultural intensity) associated with shade and less floating vegetation are preferred by specific mosquito species. All mosquito species except Anopheles maculipennis s.l., are negatively impacted by potential predators. Culiseta annulata shows positive associations with shaded and turbid water, contrary to preferences of Corixidae predators. CONCLUSIONS: Tier 3 areas managed for biodiversity, characterised by higher seasonal water levels and reduced livestock grazing intensity, provide favourable habitats for key mosquito species that are known vectors of arboviruses, such as Usutu and West Nile. Our findings emphasise the impact of biodiversity-focused wetland management, altering mosquito breeding site vegetation to enhance vector suitability. Further exploration of these trade-offs is crucial for comprehending the broader implications of wetland management.


Assuntos
Biodiversidade , Culicidae , Mosquitos Vetores , Áreas Alagadas , Animais , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia , Culicidae/classificação , Culicidae/fisiologia , Culicidae/virologia , Ecossistema , Larva/fisiologia , Estações do Ano , Reino Unido , Culex/fisiologia , Culex/virologia , Culex/classificação , Inglaterra
2.
PLoS Negl Trop Dis ; 17(5): e0011300, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126514

RESUMO

The risk of spillover of zoonotic diseases to humans is changing in response to multiple environmental and societal drivers, particularly in tropical regions where the burden of neglected zoonotic diseases is highest and land use change and forest conversion is occurring most rapidly. Neglected zoonotic diseases can have significant impacts on poor and marginalised populations in low-resource settings but ultimately receive less attention and funding for research and interventions. As such, effective control measures and interventions are often hindered by a limited ecological evidence base, which results in a limited understanding of epidemiologically relevant hosts or vectors and the processes that contribute to the maintenance of pathogens and spillover to humans. Here, we develop a generalisable next generation matrix modelling framework to better understand the transmission processes and hosts that have the greatest contribution to the maintenance of tick-borne diseases with the aim of improving the ecological evidence base and framing future research priorities for tick-borne diseases. Using this model we explore the relative contribution of different host groups and transmission routes to the maintenance of a neglected zoonotic tick-borne disease, Kyasanur Forest Disease Virus (KFD), in multiple habitat types. The results highlight the potential importance of transovarial transmission and small mammals and birds in maintaining this disease. This contradicts previous hypotheses that primates play an important role influencing the distribution of infected ticks. There is also a suggestion that risk could vary across different habitat types but currently more research is needed to evaluate this relationship. In light of these results, we outline the key knowledge gaps for this system and future research priorities that could inform effective interventions and control measures.


Assuntos
Doença da Floresta de Kyasanur , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Humanos , Doença da Floresta de Kyasanur/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Zoonoses/epidemiologia , Índia/epidemiologia , Mamíferos
3.
PLOS Glob Public Health ; 2(3): e0000075, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962247

RESUMO

There is increased global and national attention on the need for effective strategies to control zoonotic diseases. Quick, effective action is, however, hampered by poor evidence-bases and limited coordination between stakeholders from relevant sectors such as public and animal health, wildlife and forestry sectors at different scales, who may not usually work together. The OneHealth approach recognises the value of cross-sectoral evaluation of human, animal and environmental health questions in an integrated, holistic and transdisciplinary manner to reduce disease impacts and/or mitigate risks. Co-production of knowledge is also widely advocated to improve the quality and acceptability of decision-making across sectors and may be particularly important when it comes to zoonoses. This paper brings together OneHealth and knowledge co-production and reflects on lessons learned for future OneHealth co-production processes by describing a process implemented to understand spill-over and identify disease control and mitigation strategies for a zoonotic disease in Southern India (Kyasanur Forest Disease). The co-production process aimed to develop a joint decision-support tool with stakeholders, and we complemented our approach with a simple retrospective theory of change on researcher expectations of the system-level outcomes of the co-production process. Our results highlight that while co-production in OneHealth is a difficult and resource intensive process, requiring regular iterative adjustments and flexibility, the beneficial outcomes justify its adoption. A key future aim should be to improve and evaluate the degree of inter-sectoral collaboration required to achieve the aims of OneHealth. We conclude by providing guidelines based on our experience to help funders and decision-makers support future co-production processes.

4.
PLoS Negl Trop Dis ; 15(4): e0009243, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33793560

RESUMO

Zoonoses disproportionately affect tropical communities and are associated with human modification and use of ecosystems. Effective management is hampered by poor ecological understanding of disease transmission and often focuses on human vaccination or treatment. Better ecological understanding of multi-vector and multi-host transmission, social and environmental factors altering human exposure, might enable a broader suite of management options. Options may include "ecological interventions" that target vectors or hosts and require good knowledge of underlying transmission processes, which may be more effective, economical, and long lasting than conventional approaches. New frameworks identify the hierarchical series of barriers that a pathogen needs to overcome before human spillover occurs and demonstrate how ecological interventions may strengthen these barriers and complement human-focused disease control. We extend these frameworks for vector-borne zoonoses, focusing on Kyasanur Forest Disease Virus (KFDV), a tick-borne, neglected zoonosis affecting poor forest communities in India, involving complex communities of tick and host species. We identify the hierarchical barriers to pathogen transmission targeted by existing management. We show that existing interventions mainly focus on human barriers (via personal protection and vaccination) or at barriers relating to Kyasanur Forest Disease (KFD) vectors (tick control on cattle and at the sites of host (monkey) deaths). We review the validity of existing management guidance for KFD through literature review and interviews with disease managers. Efficacy of interventions was difficult to quantify due to poor empirical understanding of KFDV-vector-host ecology, particularly the role of cattle and monkeys in the disease transmission cycle. Cattle are hypothesised to amplify tick populations. Monkeys may act as sentinels of human infection or are hypothesised to act as amplifying hosts for KFDV, but the spatial scale of risk arising from ticks infected via monkeys versus small mammal reservoirs is unclear. We identified 19 urgent research priorities for refinement of current management strategies or development of ecological interventions targeting vectors and host barriers to prevent disease spillover in the future.


Assuntos
Reservatórios de Doenças/veterinária , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Doença da Floresta de Kyasanur/veterinária , Mamíferos , Zoonoses/epidemiologia , Animais , Animais Selvagens , Reservatórios de Doenças/virologia , Ecossistema , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Índia/epidemiologia , Doença da Floresta de Kyasanur/epidemiologia , Doença da Floresta de Kyasanur/virologia , Zoonoses/virologia
6.
Parasit Vectors ; 13(1): 265, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434592

RESUMO

BACKGROUND: Culicoides obsoletus is an abundant and widely distributed Holarctic biting midge species, involved in the transmission of bluetongue virus (BTV) and Schmallenberg virus (SBV) to wild and domestic ruminants. Females of this vector species are often reported jointly with two morphologically very close species, C. scoticus and C. montanus, forming the Obsoletus/Scoticus Complex. Recently, cryptic diversity within C. obsoletus was reported in geographically distant sites. Clear delineation of species and characterization of genetic variability is mandatory to revise their taxonomic status and assess the vector role of each taxonomic entity. Our objectives were to characterize and map the cryptic diversity within the Obsoletus/Scoticus Complex. METHODS: Portion of the cox1 mitochondrial gene of 3763 individuals belonging to the Obsoletus/Scoticus Complex was sequenced. Populations from 20 countries along a Palaearctic Mediterranean transect covering Scandinavia to Canary islands (North to South) and Canary islands to Turkey (West to East) were included. Genetic diversity based on cox1 barcoding was supported by 16S rDNA mitochondrial gene sequences and a gene coding for ribosomal 28S rDNA. Species delimitation using a multi-marker methodology was used to revise the current taxonomic scheme of the Obsoletus/Scoticus Complex. RESULTS: Our analysis showed the existence of three phylogenetic clades (C. obsoletus clade O2, C. obsoletus clade dark and one not yet named and identified) within C. obsoletus. These analyses also revealed two intra-specific clades within C. scoticus and raised questions about the taxonomic status of C. montanus. CONCLUSIONS: To our knowledge, our study provides the first genetic characterization of the Obsoletus/Scoticus Complex on a large geographical scale and allows a revision of the current taxonomic classification for an important group of vector species of livestock viruses in the Palaearctic region.


Assuntos
Ceratopogonidae/classificação , Variação Genética , Insetos Vetores/classificação , Filogenia , Animais , Ceratopogonidae/virologia , Ciclo-Oxigenase 1/genética , Código de Barras de DNA Taxonômico , Europa (Continente) , Feminino , Geografia , Insetos Vetores/virologia , Gado/virologia , Análise de Sequência de DNA
7.
PLoS Negl Trop Dis ; 14(4): e0008179, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32255797

RESUMO

Zoonotic diseases affect resource-poor tropical communities disproportionately, and are linked to human use and modification of ecosystems. Disentangling the socio-ecological mechanisms by which ecosystem change precipitates impacts of pathogens is critical for predicting disease risk and designing effective intervention strategies. Despite the global "One Health" initiative, predictive models for tropical zoonotic diseases often focus on narrow ranges of risk factors and are rarely scaled to intervention programs and ecosystem use. This study uses a participatory, co-production approach to address this disconnect between science, policy and implementation, by developing more informative disease models for a fatal tick-borne viral haemorrhagic disease, Kyasanur Forest Disease (KFD), that is spreading across degraded forest ecosystems in India. We integrated knowledge across disciplines to identify key risk factors and needs with actors and beneficiaries across the relevant policy sectors, to understand disease patterns and develop decision support tools. Human case locations (2014-2018) and spatial machine learning quantified the relative role of risk factors, including forest cover and loss, host densities and public health access, in driving landscape-scale disease patterns in a long-affected district (Shivamogga, Karnataka State). Models combining forest metrics, livestock densities and elevation accurately predicted spatial patterns in human KFD cases (2014-2018). Consistent with suggestions that KFD is an "ecotonal" disease, landscapes at higher risk for human KFD contained diverse forest-plantation mosaics with high coverage of moist evergreen forest and plantation, high indigenous cattle density, and low coverage of dry deciduous forest. Models predicted new hotspots of outbreaks in 2019, indicating their value for spatial targeting of intervention. Co-production was vital for: gathering outbreak data that reflected locations of exposure in the landscape; better understanding contextual socio-ecological risk factors; and tailoring the spatial grain and outputs to the scale of forest use, and public health interventions. We argue this inter-disciplinary approach to risk prediction is applicable across zoonotic diseases in tropical settings.


Assuntos
Surtos de Doenças , Doença da Floresta de Kyasanur/epidemiologia , Zoonoses/epidemiologia , Distribuição Animal , Animais , Biodiversidade , Suscetibilidade a Doenças , Florestas , Humanos , Índia/epidemiologia , Densidade Demográfica , Fatores de Risco , Regressão Espacial
8.
J Environ Qual ; 49(6): 1703-1716, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33459392

RESUMO

The dynamics and processes of nutrient cycling and release were examined for a lowland wetland-pond system, draining woodland in southern England. Hydrochemical and meteorological data were analyzed from 1997 to 2017, along with high-resolution in situ sensor measurements from 2016 to 2017. The results showed that even a relatively pristine wetland can become a source of highly bioavailable phosphorus (P), nitrogen (N), and silicon (Si) during low-flow periods of high ecological sensitivity. The drivers of nutrient release were primary production and accumulation of biomass, which provided a carbon (C) source for microbial respiration and, via mineralization, a source of bioavailable nutrients for P and N co-limited microorganisms. During high-intensity nutrient release events, the dominant N-cycling process switched from denitrification to nitrate ammonification, and a positive feedback cycle of P and N release was sustained over several months during summer and fall. Temperature controls on microbial activity were the primary drivers of short-term (day-to-day) variability in P release, with subdaily (diurnal) fluctuations in P concentrations driven by water body metabolism. Interannual relationships between nutrient release and climate variables indicated "memory" effects of antecedent climate drivers through accumulated legacy organic matter from the previous year's biomass production. Natural flood management initiatives promote the use of wetlands as "nature-based solutions" in climate change adaptation, flood management, and soil and water conservation. This study highlights potential water quality trade-offs and shows how the convergence of climate and biogeochemical drivers of wetland nutrient release can amplify background nutrient signals by mobilizing legacy nutrients, causing water quality impairment and accelerating eutrophication risk.


Assuntos
Nitrogênio , Fósforo , Inglaterra , Eutrofização , Nitrogênio/análise , Nutrientes , Fósforo/análise , Áreas Alagadas
9.
Parasit Vectors ; 12(1): 74, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30732629

RESUMO

BACKGROUND: Many mosquito-borne diseases exhibit substantial seasonality, due to strong links between environmental variables and vector and pathogen life-cycles. Further, a range of density-dependent and density-independent biotic and abiotic processes affect the phenology of mosquito populations, with potentially large knock-on effects for vector dynamics and disease transmission. Whilst it is understood that density-independent and density-dependent processes affect seasonal population levels, it is not clear how these interact temporally to shape the population peaks and troughs. Due to this, the paucity of high-resolution data for validation, and the difficulty of parameterizing density-dependent processes, models of vector dynamics may poorly estimate abundances, which has knock-on effects for our ability predict vector-borne disease outbreaks. RESULTS: We present a rich dataset describing seasonal abundance patterns of each life stage of Culex pipiens, a widespread vector of West Nile virus, at a field site in southern England in 2015. Abundance of immature stages was measured three times per week, whilst adult traps were run four nights each week. This dataset is integrated with an existing delay-differential equation model predicting Cx. pipiens seasonal abundance to improve understanding of observed seasonal abundance patterns. At our field site, the outcome of our model fitting suggests interspecific predation on mosquito larvae and temperature-dependent larval mortality combine to act as the main sources of population regulation throughout the active season, whilst competition for resources is a relatively small source of larval mortality. CONCLUSIONS: The model suggests that density-independent mortality and interspecific predation interact to shape patterns of mosquito seasonal abundance in a permanent aquatic habitat and we propose that competition for resources is likely to be important where periods of high rainfall create transient habitats. Further, we highlight the importance of challenging population abundance models with data from across all life stages of the species of interest if reliable inferences are to be drawn from these models, particularly when considering mosquito control and vector-borne disease transmission.


Assuntos
Culex/fisiologia , Modelos Teóricos , Estações do Ano , Animais , Clima , Culex/virologia , Larva/fisiologia , Estágios do Ciclo de Vida , Controle de Mosquitos , Densidade Demográfica , Dinâmica Populacional , Temperatura , Reino Unido , Vírus do Nilo Ocidental
10.
Parasit Vectors ; 5: 32, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-22316288

RESUMO

BACKGROUND: The risk posed to the United Kingdom by West Nile virus (WNV) has previously been considered low, due to the absence or scarcity of the main Culex sp. bridge vectors. The mosquito Culex modestus is widespread in southern Europe, where it acts as the principle bridge vector of WNV. This species was not previously thought to be present in the United Kingdom. FINDINGS: Mosquito larval surveys carried out in 2010 identified substantial populations of Cx. modestus at two sites in marshland in southeast England. Host-seeking-adult traps placed at a third site indicate that the relative seasonal abundance of Cx. modestus peaks in early August. DNA barcoding of these specimens from the United Kingdom and material from southern France confirmed the morphological identification. CONCLUSIONS: Cx. modestus appears to be established in the North Kent Marshes, possibly as the result of a recent introduction. The addition of this species to the United Kingdom's mosquito fauna may increase the risk posed to the United Kingdom by WNV.


Assuntos
Culex/virologia , Insetos Vetores/virologia , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Código de Barras de DNA Taxonômico , Inglaterra/epidemiologia , Feminino , França/epidemiologia , Humanos , Espécies Introduzidas , Masculino , Filogenia , Estações do Ano , Análise de Sequência de DNA , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética , Áreas Alagadas
11.
Genetics ; 166(1): 43-52, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15020405

RESUMO

Saccharomyces paradoxus is the closest known relative of the well-known S. cerevisiae and an attractive model organism for population genetic and genomic studies. Here we characterize a set of 28 wild isolates from a 10-km(2) sampling area in southern England. All 28 isolates are homothallic (capable of mating-type switching) and wild type with respect to nutrient requirements. Nine wild isolates and two lab strains of S. paradoxus were surveyed for sequence variation at six loci totaling 7 kb, and all 28 wild isolates were then genotyped at seven polymorphic loci. These data were used to calculate nucleotide diversity and number of segregating sites in S. paradoxus and to investigate geographic differentiation, population structure, and linkage disequilibrium. Synonymous site diversity is approximately 0.3%. Extensive incompatibilities between gene genealogies indicate frequent recombination between unlinked loci, but there is no evidence of recombination within genes. Some localized clonal growth is apparent. The frequency of outcrossing relative to inbreeding is estimated at 1.1% on the basis of heterozygosity. Thus, all three modes of reproduction known in the lab (clonal replication, inbreeding, and outcrossing) have been important in molding genetic variation in this species.


Assuntos
Saccharomyces/genética , Sequência de Bases , DNA Fúngico/genética , Inglaterra , Variação Genética , Genética Populacional , Genótipo , Homozigoto , Desequilíbrio de Ligação , Dados de Sequência Molecular , Fenótipo , Quercus/microbiologia , Recombinação Genética , Saccharomyces/isolamento & purificação
12.
Appl Environ Microbiol ; 69(5): 2825-30, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12732554

RESUMO

In Europe, 6 of the 11 genospecies of Borrelia burgdorferi sensu lato are prevalent in questing Ixodes ricinus ticks. In most parts of Central Europe, B. afzelii, B. garinii, and B. valaisiana are the most frequent species, whereas B. burgdorferi sensu stricto, B. bissettii, and B. lusitaniae are rare. Previously, it has been shown that B. afzelii is associated with European rodents. Therefore, the aim of this study was to identify reservoir hosts of B. garinii and B. valaisiana in Slovakia. Songbirds were captured in a woodland near Bratislava and investigated for engorged ticks. Questing I. ricinus ticks were collected in the same region. Both tick pools were analyzed for spirochete infections by PCR, followed by DNA-DNA hybridization and, for a subsample, by nucleotide sequencing. Three of the 17 captured songbird species were infested with spirochete-infected ticks. Spirochetes in ticks that had fed on birds were genotyped as B. garinii and B. valaisiana, whereas questing ticks were infected with B. afzelii, B. garinii, and B. valaisiana. Furthermore, identical ospA alleles of B. garinii were found in ticks that had fed on the birds and in questing ticks. The data show that songbirds are reservoir hosts of B. garinii and B. valaisiana but not of B. afzelii. This and previous studies confirm that B. burgdorferi sensu lato is host associated and that this bacterial species complex contains different ecotypes.


Assuntos
Borrelia/isolamento & purificação , Aves Canoras/microbiologia , Animais , Vetores Aracnídeos/microbiologia , Sequência de Bases , Borrelia/classificação , Borrelia/genética , Borrelia/patogenicidade , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/isolamento & purificação , DNA Bacteriano/genética , Reservatórios de Doenças , Ixodes/microbiologia , Dados de Sequência Molecular , Eslováquia , Especificidade da Espécie
13.
Appl Environ Microbiol ; 69(5): 3008-10, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12732580

RESUMO

The distribution of Borrelia burgdorferi sensu lato genospecies in questing Ixodes ricinus ticks from ecologically distinct habitats in Latvia was analyzed. A significant variation in the frequency of the genospecies across sites was observed, pointing to the importance of the host community in the ecology of Lyme borreliosis.


Assuntos
Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/isolamento & purificação , Lipoproteínas , Alelos , Animais , Antígenos de Superfície/genética , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas , Grupo Borrelia Burgdorferi/classificação , Meio Ambiente , Genes Bacterianos , Variação Genética , Ixodes/microbiologia , Letônia , Sorotipagem
14.
Infect Immun ; 70(10): 5893-5, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12228325

RESUMO

The abilities of the most common European genospecies of Borrelia burgdorferi sensu lato to survive blood meals taken by ticks feeding on birds were analyzed. A pattern of differential survival of the spirochetes in feeding ticks was observed. The result is consistent with the concept of selective transmission of Lyme borreliosis spirochetes.


Assuntos
Vetores Aracnídeos/microbiologia , Aves/microbiologia , Borrelia burgdorferi/isolamento & purificação , Doença de Lyme/transmissão , Carrapatos/microbiologia , Animais , Vetores Aracnídeos/imunologia , Aves/imunologia , Borrelia burgdorferi/imunologia , Via Alternativa do Complemento , Reservatórios de Doenças , Vetores de Doenças , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Carrapatos/imunologia
15.
Int J Med Microbiol ; 291 Suppl 33: 152-4, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12141740

RESUMO

The roles of selection and migration of B. burgdorferi s. l. were studied. Questing adult Ixodes ricinus ticks were collected across Europe and analysed for infection with B. burgdorferi s. l. Analysis of the genospecies in individual ticks showed that B. garinii and B. valaisiana segregate from B. afzelii. Segregation of bird- and rodent-associated Borrelia genotypes can be explained by the operation of complement-mediated selection in the midgut of the feeding tick. Phylogenetic analyses of B. burgdorferi s. l. indicate high rates of migration for bird-associated genotypes. Altogether, it is emerging that the ecology of Lyme borreliosis is largely host-driven and that selection and migration are major forces shaping the population structures of B. burgdorferi s. l.


Assuntos
Vetores Aracnídeos/microbiologia , Grupo Borrelia Burgdorferi/classificação , Ixodes/microbiologia , Doença de Lyme/microbiologia , Animais , Aves , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/isolamento & purificação , Transmissão de Doença Infecciosa , Ecossistema , Europa (Continente) , Genótipo , Interações Hospedeiro-Parasita , Humanos , Doença de Lyme/transmissão , Filogenia , Roedores
16.
Trends Microbiol ; 10(2): 74-9, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11827808

RESUMO

Borrelia burgdorferi sensu lato (s.l.), the tick-borne agent of Lyme borreliosis, is a bacterial species complex comprising 11 genospecies. Here, we discuss whether the delineation of genospecies is ecologically relevant. We provide evidence that B. burgdorferi s.l. is structured ecologically into distinct clusters that are host specific. An immunological model for niche adaptation is proposed that suggests the operation of complement-mediated selection in the midgut of the feeding tick. We conclude that vertebrate hosts rather than tick species are the key to Lyme borreliosis spirochaete diversity.


Assuntos
Vetores Aracnídeos , Borrelia burgdorferi/fisiologia , Proteínas do Sistema Complemento/fisiologia , Carrapatos/parasitologia , Vertebrados/imunologia , Animais , Borrelia burgdorferi/genética , Via Alternativa do Complemento , Variação Genética , Interações Hospedeiro-Parasita/imunologia , Especificidade da Espécie , Carrapatos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...