Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
MAbs ; 9(3): 506-520, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28095113

RESUMO

Cell surface antigen-specific antibodies are of substantial diagnostic and therapeutic importance. The binding properties of such antibodies are usually evaluated by cell-free assays, in particular surface plasmon resonance (SPR) analysis, or flow cytometry. SPR analyses allow the detailed quantitative and dynamic evaluation of the binding properties of antibodies, but need purified, typically recombinantly produced antigens. It can, however, be difficult to produce the required antigen. Furthermore, cellular factors influencing the antigen-antibody interaction are not considered by this method. Flow cytometry-based analyses do not have these limitations, but require elaborated calibration controls for absolute quantification of bound molecules. To overcome the limitations of SRP and flow cytometry in the characterization of cell surface antigen-specific antibodies, we developed Fn14-specific antibody 18D1 as an example of an antibody fusion protein format that includes the luciferase of Gaussia princeps (GpL), which enables very simple and highly sensitive cellular binding studies. We found that GpL-tagging of the C-terminus of the antibody light chain does not affect the interaction of 18D1-IgG1 with its antigen and Fc-gamma receptors (FcγRs). In accordance with this, the GpL(LC-CT)-18D1-IgG1 antibody fusion protein showed basically the same FcγR-dependent agonistic properties as the parental 18D1 antibody. Similar results were obtained with isotype switch variants of 18D1 and antibodies specific for CD95, LTßR and CD40. In sum, we demonstrate that antibody GpL fusion proteins are easily manageable and versatile tools for the characterization of cell surface antigen-antibody interactions that have the potential to considerably extend the instrumentarium for the evaluation of antibodies.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Superfície/imunologia , Técnicas Imunológicas/métodos , Proteínas Recombinantes de Fusão/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina G/química , Imunoglobulina G/imunologia , Luciferases , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Receptor de TWEAK/imunologia
3.
J Exp Med ; 213(9): 1881-900, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27526711

RESUMO

Donor CD4(+)Foxp3(+) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT [allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2- and T reg cell-dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo.


Assuntos
Doença Enxerto-Hospedeiro/prevenção & controle , Receptores Tipo II do Fator de Necrose Tumoral/fisiologia , Linfócitos T Reguladores/imunologia , Doença Aguda , Animais , Feminino , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas , Interleucina-2/farmacologia , Camundongos , Camundongos Endogâmicos , Células Supressoras Mieloides/fisiologia
4.
J Biol Chem ; 291(10): 5022-37, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26721880

RESUMO

Ligands of the tumor necrosis factor superfamily (TNFSF) interact with members of the TNF receptor superfamily (TNFRSF). TNFSF ligand-TNFRSF receptor interactions have been intensively evaluated by many groups. The affinities of TNFSF ligand-TNFRSF receptor interactions are highly dependent on the oligomerization state of the receptor, and cellular factors (e.g. actin cytoskeleton and lipid rafts) influence the assembly of ligand-receptor complexes, too. Binding studies on TNFSF ligand-TNFRSF receptor interactions were typically performed using cell-free assays with recombinant fusion proteins that contain varying numbers of TNFRSF ectodomains. It is therefore not surprising that affinities determined for an individual TNFSF ligand-TNFRSF interaction differ sometimes by several orders of magnitude and often do not reflect the ligand activity observed in cellular assays. To overcome the intrinsic limitations of cell-free binding studies and usage of recombinant receptor domains, we performed comprehensive binding studies with Gaussia princeps luciferase TNFSF ligand fusion proteins for cell-bound TNFRSF members on intact cells at 37 °C. The affinities of the TNFSF ligand G. princeps luciferase-fusion proteins ranged between 0.01 and 19 nm and offer the currently most comprehensive and best suited panel of affinities for in silico studies of ligand-receptor systems of the TNF family.


Assuntos
Receptores do Fator de Necrose Tumoral/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Células HEK293 , Humanos , Luciferases/genética , Ligação Proteica , Receptores do Fator de Necrose Tumoral/genética , Proteínas Recombinantes
5.
Blood ; 126(4): 437-44, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26012567

RESUMO

Inhibition of the tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) system reduces intestinal cell death and disease development in several models of colitis. In view of the crucial role of TNF and intestinal cell death in graft-versus-host disease (GVHD) and the ability of TWEAK to enhance TNF-induced cell death, we tested here the therapeutic potential of Fn14 blockade on allogeneic hematopoietic cell transplantation (allo-HCT)-induced intestinal GVHD. An Fn14-specific blocking human immunoglobulin G1 antibody variant with compromised antibody-dependent cellular cytotoxicity (ADCC) activity strongly inhibited the severity of murine allo-HCT-induced GVHD. Treatment of the allo-HCT recipients with this monoclonal antibody reduced cell death of gastrointestinal cells but neither affected organ infiltration by donor T cells nor cytokine production. Fn14 blockade also inhibited intestinal cell death in mice challenged with TNF. This suggests that the protective effect of Fn14 blockade in allo-HCT is based on the protection of intestinal cells from TNF-induced apoptosis and not due to immune suppression. Importantly, Fn14 blockade showed no negative effect on graft-versus-leukemia/lymphoma (GVL) activity. Thus, ADCC-defective Fn14-blocking antibodies are not only possible novel GVL effect-sparing therapeutics for the treatment of GVHD but might also be useful for the treatment of other inflammatory bowel diseases where TNF-induced cell death is of relevance.


Assuntos
Anticorpos Monoclonais Murinos/uso terapêutico , Apoptose , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Intestinos/patologia , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Inibidores do Fator de Necrose Tumoral , Animais , Citotoxicidade Celular Dependente de Anticorpos , Western Blotting , Células Cultivadas , Citocina TWEAK , Modelos Animais de Doenças , Feminino , Imunofluorescência , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/patologia , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/imunologia , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Medições Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/imunologia , Receptores do Fator de Necrose Tumoral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rituximab , Receptor de TWEAK , Fator de Necrose Tumoral alfa/farmacologia , Fatores de Necrose Tumoral/imunologia , Fatores de Necrose Tumoral/metabolismo
6.
PLoS One ; 8(9): e75737, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098720

RESUMO

Multiple activities are ascribed to the cytokine tumor necrosis factor (TNF) in health and disease. In particular, TNF was shown to affect carcinogenesis in multiple ways. This cytokine acts via the activation of two cell surface receptors, TNFR1, which is associated with inflammation, and TNFR2, which was shown to cause anti-inflammatory signaling. We assessed the effects of TNF and its two receptors on the progression of pancreatic cancer by in vivo bioluminescence imaging in a syngeneic orthotopic tumor mouse model with Panc02 cells. Mice deficient for TNFR1 were unable to spontaneously reject Panc02 tumors and furthermore displayed enhanced tumor progression. In contrast, a fraction of wild type (37.5%), TNF deficient (12.5%), and TNFR2 deficient mice (22.2%) were able to fully reject the tumor within two weeks. Pancreatic tumors in TNFR1 deficient mice displayed increased vascular density, enhanced infiltration of CD4(+) T cells and CD4(+) forkhead box P3 (FoxP3)(+) regulatory T cells (Treg) but reduced numbers of CD8(+) T cells. These alterations were further accompanied by transcriptional upregulation of IL4. Thus, TNF and TNFR1 are required in pancreatic ductal carcinoma to ensure optimal CD8(+) T cell-mediated immunosurveillance and tumor rejection. Exogenous systemic administration of human TNF, however, which only interacts with murine TNFR1, accelerated tumor progression. This suggests that TNFR1 has basically the capability in the Panc02 model to trigger pro-and anti-tumoral effects but the spatiotemporal availability of TNF seems to determine finally the overall outcome.


Assuntos
Carcinoma Ductal/fisiopatologia , Regulação da Expressão Gênica/imunologia , Neoplasias Pancreáticas/fisiopatologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Carcinoma Ductal/imunologia , Carcinoma Ductal/metabolismo , Linhagem Celular Tumoral , Primers do DNA/genética , Citometria de Fluxo , Interleucina-4/metabolismo , Medições Luminescentes , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
J Immunol ; 191(5): 2308-18, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23918987

RESUMO

We found recently that TNF-like weak inducer of apoptosis (TWEAK) and fibroblast growth factor-inducible-14 (Fn14) by virtue of their strong capability to reduce the freely available cytoplasmic pool of TNFR-associated factor (TRAF)2 and cellular inhibitors of apoptosis (cIAPs) antagonize the functions of these molecules in TNFR1 signaling, resulting in sensitization for apoptosis and inhibition of classical NF-κB signaling. In this study, we demonstrate that priming of cells with TWEAK also interferes with activation of the classical NF-κB pathway by CD40. Likewise, there was strong inhibition of CD40 ligand (CD40L)-induced activation of MAPKs in TWEAK-primed cells. FACS analysis and CD40L binding studies revealed unchanged CD40 expression and normal CD40L-CD40 interaction in TWEAK-primed cells. CD40L immunoprecipitates, however, showed severely reduced amounts of CD40 and CD40-associated proteins, indicating impaired formation or reduced stability of CD40L-CD40 signaling complexes. The previously described inhibitory effect of TWEAK on TNFR1 signaling has been traced back to reduced activity of the TNFR1-associated TRAF2-cIAP1/2 ubiquitinase complex and did not affect the stability of the immunoprecipitable TNFR1 receptor complex. Thus, the inhibitory effect of TWEAK on CD40 signaling must be based at least partly on other mechanisms. In line with this, signaling by the CD40-related TRAF2-interacting receptor TNFR2 was also attenuated but still immunoprecipitable in TWEAK-primed cells. Collectively, we show that Fn14 activation by soluble TWEAK impairs CD40L-CD40 signaling complex formation and inhibits CD40 signaling and thus identify the Fn14-TWEAK system as a potential novel regulator of CD40-related cellular functions.


Assuntos
Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Fator 2 Associado a Receptor de TNF/metabolismo , Fatores de Necrose Tumoral/metabolismo , Western Blotting , Antígenos CD40/imunologia , Ligante de CD40/imunologia , Linhagem Celular , Citocina TWEAK , Citometria de Fluxo , Humanos , Imunoprecipitação , Microscopia Confocal , Receptores do Fator de Necrose Tumoral/imunologia , Fator 2 Associado a Receptor de TNF/imunologia , Receptor de TWEAK , Fatores de Necrose Tumoral/imunologia
8.
Carcinogenesis ; 34(6): 1296-303, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23385062

RESUMO

The cytokine tumor necrosis factor (TNF) has pleiotropic functions both in normal physiology and disease. TNF signals by the virtue of two cell surface receptors, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). Exogenous TNF promotes experimental metastasis in some models, yet the underlying mechanisms are poorly understood. To study the contribution of host TNFR1 and TNFR2 on tumor cell progression and metastasis, we employed a syngeneic B16F10 melanoma mouse model of lung metastasis combined with in vivo bioluminescence imaging. Treatment of tumor-bearing mice with recombinant human TNF resulted in a significant increase in tumor burden and metastatic foci. This correlated with an increase in pulmonary regulatory CD4(+)/Foxp3(+) T cells. TNF caused an expansion of regulatory T (Treg) cells in vitro in a TNFR2-dependent manner. To assess the contribution of immune cell expression of endogenous TNF and its two receptors on B16F10 metastasis, we generated bone marrow chimeras by reconstituting wild-type mice with bone marrow from different knockout mice. Loss of either TNF or TNFR2 on immune cells resulted in decreased B16F10 metastasis and lower numbers of Treg cells within the lungs of these animals. Selective depletion of Treg cells attenuated metastasis even in conjunction with TNF treatment. We propose a novel mechanism in which TNF activates TNFR2 on Treg cells and thereby expands this immunosuppressive immune cell population. Loss of either TNF or TNFR2 prevents the accumulation of Treg cells and results in a less tolerogenic environment, enabling the immune system to control B16F10 tumor metastasis and growth.


Assuntos
Neoplasias Pulmonares/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Antígenos CD4/biossíntese , Linhagem Celular Tumoral , Proliferação de Células , Fatores de Transcrição Forkhead/biossíntese , Neoplasias Pulmonares/secundário , Melanoma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Metástase Neoplásica , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/imunologia , Fator de Necrose Tumoral alfa/metabolismo
9.
J Biol Chem ; 287(28): 24026-42, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22645131

RESUMO

The capability of soluble CD95L trimers to trigger CD95-associated signaling pathways is drastically increased by oligomerization. The latter can be achieved, for example, by antibodies recognizing a N-terminal epitope tag in recombinant CD95L variants or by genetic engineering-enforced formation of hexamers. Using highly sensitive and accurate binding studies with recombinant CD95L variants equipped with a Gaussia princeps luciferase reporter domain, we found that oligomerization of CD95L has no major effect on CD95 occupancy. This indicates that the higher activity of oligomerized CD95L trimers is not related to an avidity-related increase in apparent affinity and points instead to a crucial role of aggregation of initially formed trimeric CD95L-CD95 complexes in CD95 activation. Furthermore, binding of soluble CD95L trimers was found to be insufficient to increase the association of CD95 with the lipid raft-containing membrane fraction. However, when Gaussia princeps luciferase-CD95L trimers were used as tracers to "mark" inactive CD95 molecules, increased association of these inactive receptors was observed upon activation of the remaining CD95 molecules by help of highly active hexameric Fc-CD95L or membrane CD95L. Moreover, in cells expressing endogenous CD95 and chimeric CD40-CD95 receptors, triggering of CD95 signaling via endogenous CD95 resulted in co-translocation of CD40-CD95 to the lipid raft fraction, whereas vice versa activation of CD95-associated pathways with Fc-CD40L via CD40-CD95 resulted in co-translocation of endogenous CD95. In sum, this shows that signaling-active CD95 molecules not only enhance their own association with the lipid raft-containing membrane fraction but also those of inactive CD95 molecules.


Assuntos
Proteína Ligante Fas/metabolismo , Microdomínios da Membrana/metabolismo , Transdução de Sinais , Receptor fas/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Antígenos CD40/química , Antígenos CD40/genética , Antígenos CD40/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Cicloeximida/farmacologia , Proteína Ligante Fas/química , Proteína Ligante Fas/genética , Células HEK293 , Humanos , Células Jurkat , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico , Solubilidade , Receptor fas/química , Receptor fas/genética
10.
J Biol Chem ; 287(1): 484-495, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22081603

RESUMO

To perform highly sensitive cellular binding studies with TNF-like weak inducer of apoptosis (TWEAK), we developed a bioluminescent variant of soluble TWEAK (GpL-FLAG-TNC-TWEAK) by fusing it genetically to the C terminus of the luciferase of Gaussia princeps (GpL). Equilibrium binding studies on human (HT1080 and HT29) and murine (Renca and B16) cell lines at 37 °C revealed high affinities of human TWEAK from 53 to 112 pm. The dissociation rate constant of the TWEAK-Fn14 interaction was between 0.48×10(-3) s(-1) (HT29) and 0.58×10(-3) s(-1) (HT1080) for the human molecules, and the association rate constant obtained was 3.3×10(6) m(-1) s(-1) for both cell lines. It has been shown previously that oligomerization of soluble TWEAK trimers results in enhanced Fn14-mediated activation of the classical NFκB pathway. Binding studies with GpL-FLAG-TNC-TWEAK trimers oligomerized by help of a FLAG tag-specific antibody gave no evidence for a major increase in Fn14 occupancy by oligomerized ligand despite strongly enhanced induction of the NFκB target IL8. Thus, aggregated complexes of soluble TWEAK and Fn14 have a higher intrinsic activity to stimulate the classical NFκB pathway and qualitatively differ from isolated trimeric TWEAK-Fn14 complexes. Furthermore, determination of IL8 induction as a function of occupied activated receptors revealed that the intrinsic capability of TNFR1 to stimulate the classical NFκB pathway and IL8 production was ∼100-fold higher than Fn14. Thus, although ∼25 activated TNFR1 trimers were sufficient to trigger half-maximal IL8 production, more than 2500 cell-bound oligomerized TWEAK trimers were required to elicit a similar response.


Assuntos
Receptores do Fator de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linhagem Celular , Citocina TWEAK , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Inflamação/patologia , Luciferases/genética , Camundongos , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Receptores de Superfície Celular/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Solubilidade , Receptor de TWEAK , Fatores de Necrose Tumoral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...