Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(21): e202302208, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36821699

RESUMO

As alternative energy sources are essential to reach a climate-neutral economy, hydrogen peroxide (H2 O2 ) as futuristic energy carrier gains enormous awareness. However, seeking for stable and electrochemically selective H2 O2 ORR electrocatalyst is yet a challenge, making the design of-ideally-bifunctional catalysts extremely important and outmost of interest. In this study, we explore the application of a trimetallic cobalt(II) triazole pyridine bis-[cobalt(III) corrole] complex CoII TP[CoIII C]2 3 in OER and ORR catalysis due to its remarkable physicochemical properties, fast charge transfer kinetics, electrochemical reversibility, and durability. With nearly 100 % selective catalytic activity towards the two-electron transfer generated H2 O2 , an ORR onset potential of 0.8 V vs RHE and a cycling stability of 50 000 cycles are detected. Similarly, promising results are obtained when applied in OER catalysis. A relatively low overpotential at 10 mA cm-2 of 412 mV, Faraday efficiency 98 % for oxygen, an outstanding Tafel slope of 64 mV dec-1 combined with superior stability.

2.
Adv Mater ; 35(5): e2208061, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36305028

RESUMO

Incorporating large organic cations to form 2D and mixed 2D/3D structures significantly increases the stability of perovskite solar cells. However, due to their low electron mobility, aligning the organic sheets to ensure unimpeded charge transport is critical to rival the high performances of pure 3D systems. While additives such as methylammonium chloride (MACl) can enable this preferential orientation, so far, no complete description exists explaining how they influence the nucleation process to grow highly aligned crystals. Here, by investigating the initial stages of the crystallization, as well as partially and fully formed perovskites grown using MACl, the origins underlying this favorable alignment are inferred. This mechanism is studied by employing 3-fluorobenzylammonium in quasi-2D perovskite solar cells. Upon assisting the crystallization with MACl, films with a degree of preferential orientation of 94%, capable of withstanding moisture levels of 97% relative humidity for 10 h without significant changes in the crystal structure are achieved. Finally, by combining macroscopic, microscopic, and spectroscopic studies, the nucleation process leading to highly oriented perovskite films is elucidated. Understanding this mechanism will aid in the rational design of future additives to achieve more defect tolerant and stable perovskite optoelectronics.

3.
Angew Chem Weinheim Bergstr Ger ; 135(21): e202302208, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38516328

RESUMO

As alternative energy sources are essential to reach a climate-neutral economy, hydrogen peroxide (H2O2) as futuristic energy carrier gains enormous awareness. However, seeking for stable and electrochemically selective H2O2 ORR electrocatalyst is yet a challenge, making the design of-ideally-bifunctional catalysts extremely important and outmost of interest. In this study, we explore the application of a trimetallic cobalt(II) triazole pyridine bis-[cobalt(III) corrole] complex CoIITP[CoIIIC]2 3 in OER and ORR catalysis due to its remarkable physicochemical properties, fast charge transfer kinetics, electrochemical reversibility, and durability. With nearly 100 % selective catalytic activity towards the two-electron transfer generated H2O2, an ORR onset potential of 0.8 V vs RHE and a cycling stability of 50 000 cycles are detected. Similarly, promising results are obtained when applied in OER catalysis. A relatively low overpotential at 10 mA cm-2 of 412 mV, Faraday efficiency 98 % for oxygen, an outstanding Tafel slope of 64 mV dec-1 combined with superior stability.

4.
Front Chem ; 10: 956502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704620

RESUMO

Although the core of electrochemistry involves simple oxidation and reduction reactions, it can be complicated in real electrochemical organic reactions. The principles used in electrochemical reactions have been derived using physical organic chemistry, which drives other organic/inorganic reactions. This review mainly comprises two themes: the first discusses the factors that help optimize an electrochemical reaction, including electrodes, supporting electrolytes, and electrochemical cell design, and the second outlines studies conducted in the field over a period of 10 years. Electrochemical reactions can be used as a versatile tool for synthetically important reactions by modifying the constant electrolysis current.

5.
Front Chem ; 9: 685619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336786

RESUMO

Since decades, the global community has been facing an environmental crisis, resulting in the need to switch from outdated to new, more efficient energy sources and a more effective way of tackling the rising carbon dioxide emissions. The activation of small molecules such as O2, H+, and CO2 in a cost-and energy-efficient way has become one of the key topics of catalysis research. The main issue concerning the activation of these molecules is the kinetic barrier that has to be overcome in order for the catalyzed reaction to take place. Nature has already provided many pathways in which small molecules are being activated and changed into compounds with higher energy levels. One of the most famous examples would be photosynthesis in which CO2 is transformed into glucose and O2 through sunlight, thus turning solar energy into chemical energy. For these transformations nature mostly uses enzymes that function as catalysts among which porphyrin and porphyrin-like structures can be found. Therefore, the research focus lies on the design of novel porphyrinoid systems (e.g. corroles, porphyrins and phthalocyanines) whose metal complexes can be used for the direct electrocatalytic reduction of CO2 to valuable chemicals like carbon monoxide, formate, methanol, ethanol, methane, ethylene, or acetate. For example the cobalt(III)triphenylphosphine corrole complex has been used as a catalyst for the electroreduction of CO2 to ethanol and methanol. The overall goal and emphasis of this research area is to develop a method for industrial use, raising the question of whether and how to incorporate the catalyst onto supportive materials. Graphene oxide, multi-walled carbon nanotubes, carbon black, and activated carbon, to name a few examples, have become researched options. These materials also have a beneficial effect on the catalysis through for instance preventing rival reactions such as the Hydrogen Evolution Reaction (HER) during CO2 reduction. It is very apparent that the topic of small molecule activation offers many solutions for our current energy as well as environmental crises and is becoming a thoroughly investigated research objective. This review article aims to give an overview over recently gained knowledge and should provide a glimpse into upcoming challenges relating to this subject matter.

6.
European J Org Chem ; 2021(14): 2114-2120, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34248412

RESUMO

We report on the first cobalt corrole that effectively mediates the homogeneous hydrogenation of structurally diverse nitroarenes to afford the corresponding amines. The given catalyst is easily assembled prior to use from 4-tert-butylbenzaldehyde and pyrrole followed by metalation of the resulting corrole macrocycle with cobalt(II) acetate. The thus-prepared complex is self-contained in that the hydrogenation protocol is free from the requirement for adding any auxiliary reagent to elicit the catalytic activity of the applied metal complex. Moreover, a containment system is not required for the assembly of the hydrogenation reaction set-up as both the autoclave and the reaction vessels are readily charged under a regular laboratory atmosphere.

7.
Angew Chem Int Ed Engl ; 59(26): 10527-10534, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32281187

RESUMO

The controlled electrochemical reduction of carbon dioxide to value added chemicals is an important strategy in terms of renewable energy technologies. Therefore, the development of efficient and stable catalysts in an aqueous environment is of great importance. In this context, we focused on synthesizing and studying a molecular MnIII -corrole complex, which is modified on the three meso-positions with polyethylene glycol moieties for direct and selective production of acetic acid from CO2 . Electrochemical reduction of MnIII leads to an electroactive MnII species, which binds CO2 and stabilizes the reduced intermediates. This catalyst allows to electrochemically reduce CO2 to acetic acid in a moderate acidic aqueous medium (pH 6) with a selectivity of 63 % and a turn over frequency (TOF) of 8.25 h-1 , when immobilized on a carbon paper (CP) electrode. In terms of high selectivity towards acetate, we propose the formation and reduction of an oxalate type intermediate, stabilized at the MnIII -corrole center.

8.
Nat Commun ; 10(1): 3864, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455766

RESUMO

Electrochemical conversion of CO2 to alcohols is one of the most challenging methods of conversion and storage of electrical energy in the form of high-energy fuels. The challenge lies in the catalyst design to enable its real-life implementation. Herein, we demonstrate the synthesis and characterization of a cobalt(III) triphenylphosphine corrole complex, which contains three polyethylene glycol residues attached at the meso-phenyl groups. Electron-donation and therefore reduction of the cobalt from cobalt(III) to cobalt(I) is accompanied by removal of the axial ligand, thus resulting in a square-planar cobalt(I) complex. The cobalt(I) as an electron-rich supernucleophilic d8-configurated metal centre, where two electrons occupy and fill up the antibonding dz2 orbital. This orbital possesses high affinity towards electrophiles, allowing for such electronically configurated metals reactions with carbon dioxide. Herein, we report the potential dependent heterogeneous electroreduction of CO2 to ethanol or methanol of an immobilized cobalt A3-corrole catalyst system. In moderately acidic aqueous medium (pH = 6.0), the cobalt corrole modified carbon paper electrode exhibits a Faradaic Efficiency (FE%) of 48 % towards ethanol production.

9.
J Phys Chem Lett ; 9(22): 6412-6420, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30362761

RESUMO

The interplay between Mn ions and corrole ligands gives rise to complex scenarios regarding the metal centers' electronic properties expressing a range of high oxidation states and spin configurations. The resulting potential of Mn-corroles for applications such as catalysts or fuel cells has recently been demonstrated. However, despite being crucial for their functionality, the electronic structure of Mn-corroles is often hardly accessible with traditional techniques and thus is still under debate, especially under interfacial conditions. Here, we unravel the electronic ground state of the prototypical Mn-5,10,15-tris(pentafluorophenyl)corrole complex through X-ray spectroscopic investigations of ultrapure thin films and quantum chemical analysis. The theory-based interpretation of Mn photoemission and absorption fine structure spectra (3s and 2p and L2,3-edge, respectively) evidence a Mn(III) oxidation state with an S = 2 high-spin configuration. By referencing density functional theory calculations with the experiments, we lay the basis for extending our approach to the characterization of complex interfaces.

10.
Monatsh Chem ; 149(4): 773-781, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681657

RESUMO

ABSTRACT: We report the chemical synthesis and characterization of the stable 5,15-bis(pentafluorophenyl)-10-(trimethylsilylethynyl)corrole which serves as a precursor for the subsequent in situ sila-Sonogashira-cross-coupling reaction and metalation with copper(II) acetate. Under ambient conditions and a common catalyst system the reaction with 1-iodopyrene occurred within five hours. Due to the direct conjugation of the 18π-electronic system of the corrole macrocycle over the alkynyl group to the pyrene moiety the optical transitions in the Soret (B-) band Q-band region are significantly altered. The copper corrole exhibited complex hyperfine and superhyperfine structure in the EPR spectrum. The assignment of the EPR spectrum reveals the existence of an axial [CuII-cor∙+] species.

11.
ChemistryOpen ; 6(6): 721-732, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29226060

RESUMO

In this study, two new terpyridine-based EuIII complexes were synthesized, the structures of which were optimized for luminescence resonance energy-transfer (LRET) experiments. The complexes showed high quantum yields (32 %); a single long lifetime (1.25 ms), which was not influenced by coupling to protein; very high stability in the presence of chelators such as ethylenediamine-N,N,N',N'-tetraacetate and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid; and no interaction with cofactors such as adenosine triphosphate and guanosine triphosphate. A special feature is the short length of the linker between the EuIII ion and the maleimide or hydrazide function, which allows for site-specific coupling of cysteine mutants or unnatural keto amino acids. As a consequence, the new complexes appear particularly suited for accurate distance measurements in biomolecules by LRET.

12.
Chemistry ; 23(70): 17721-17726, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-28758266

RESUMO

The chemical synthesis and biological activity of novel functionalized imidazoquinoline derivatives (ImQ) to generate Toll-like receptor (TLR) 7/8 specific prodrugs are presented. In vivo activity of ImQs to induce inflammation was confirmed in zebrafish larvae. After covalent ligation to fully biodegradable polyphosphazenes (ImQ-polymer), the macromolecular prodrugs were designed to undergo intracellular pH-sensitive release of ImQs to induce inflammation through binding to endosomal TLR7/8 (danger signal). We showed ImQ dissociation from prodrugs at a pH 5 pointing towards endosomal prodrug degradability. ImQ-polymers strongly activated ovalbumin-specific T cells in murine splenocytes as shown by increased proliferation and expression of the IL-2 receptor (CD25) on CD8+ T cells accompanied by strong IFN-γ release. ImQ prodrugs presented here are suggested to form the basis of novel nanovaccines, for example, for intravenous or intratumoral cancer immunotherapeutic applications to trigger physiological antitumor immune responses.


Assuntos
Pró-Fármacos/química , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor 8 Toll-Like/antagonistas & inibidores , Animais , Animais Geneticamente Modificados/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Concentração de Íons de Hidrogênio , Inflamação/etiologia , Interferon gama/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Camundongos , Microscopia Confocal , NF-kappa B/metabolismo , Pró-Fármacos/síntese química , Pró-Fármacos/toxicidade , Quinolinas/síntese química , Quinolinas/química , Quinolinas/toxicidade , Receptores de Interleucina-2/genética , Receptores de Interleucina-2/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
13.
Sci Adv ; 3(8): e1700686, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28798958

RESUMO

Selective electrocatalysts are urgently needed for carbon dioxide (CO2) reduction to replace fossil fuels with renewable fuels, thereby closing the carbon cycle. To date, noble metals have achieved the best performance in energy yield and faradaic efficiency and have recently reached impressive electrical-to-chemical power conversion efficiencies. However, the scarcity of precious metals makes the search for scalable, metal-free, CO2 reduction reaction (CO2RR) catalysts all the more important. We report an all-organic, that is, metal-free, electrocatalyst that achieves impressive performance comparable to that of best-in-class Ag electrocatalysts. We hypothesized that polydopamine-a conjugated polymer whose structure incorporates hydrogen-bonded motifs found in enzymes-could offer the combination of efficient electrical conduction, together with rendered active catalytic sites, and potentially thereby enable CO2RR. Only by developing a vapor-phase polymerization of polydopamine were we able to combine the needed excellent conductivity with thin film-based processing. We achieve catalytic performance with geometric current densities of 18 mA cm-2 at 0.21 V overpotential (-0.86 V versus normal hydrogen electrode) for the electrosynthesis of C1 species (carbon monoxide and formate) with continuous 16-hour operation at >80% faradaic efficiency. Our catalyst exhibits lower overpotentials than state-of-the-art formate-selective metal electrocatalysts (for example, 0.5 V for Ag at 18 mA cm-1). The results confirm the value of exploiting hydrogen-bonded sequences as effective catalytic centers for renewable and cost-efficient industrial CO2RR applications.

14.
Nat Commun ; 8(1): 91, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28733618

RESUMO

Successful formation of electronic interfaces between living cells and semiconductors hinges on being able to obtain an extremely close and high surface-area contact, which preserves both cell viability and semiconductor performance. To accomplish this, we introduce organic semiconductor assemblies consisting of a hierarchical arrangement of nanocrystals. These are synthesised via a colloidal chemical route that transforms the nontoxic commercial pigment quinacridone into various biomimetic three-dimensional arrangements of nanocrystals. Through a tuning of parameters such as precursor concentration, ligands and additives, we obtain complex size and shape control at room temperature. We elaborate hedgehog-shaped crystals comprising nanoscale needles or daggers that form intimate interfaces with the cell membrane, minimising the cleft with single cells without apparent detriment to viability. Excitation of such interfaces with light leads to effective cellular photostimulation. We find reversible light-induced conductance changes in ion-selective or temperature-gated channels.Nanomaterials that form a bioelectronic interface with cells are fascinating tools for controlling cellular behavior. Here, the authors photostimulate single cells with spiky assemblies of semiconducting quinacridone nanocrystals, whose nanoscale needles maximize electronic contact with the cells.

15.
Chem Asian J ; 12(10): 1048-1051, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28378897

RESUMO

The cooperative catalytic activity of several metal corrole complexes in combination with tetrabutyl-ammonium bromide (TBAB) has been investigated for the reaction of epoxides with CO2 leading to cyclic carbonates. It was found that the use of just 0.05 mol % of a manganese(III)corrole with 2 mol % TBAB exhibits excellent catalytic activity under an atmosphere of CO2 .

16.
ACS Nano ; 11(3): 3383-3391, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28212484

RESUMO

Radical cyclization is among the most powerful and versatile reactions for constructing mono- and polycyclic systems, but has, to date, remained unexplored in the context of on-surface synthesis. We report the controlled on-surface synthesis of stable corrole radicals on Ag(111) via site-specific dehydrogenation of a pyrrole N-H bond in the 5,10,15-tris(pentafluoro-phenyl)-corrole triggered by annealing at 330 K under ultrahigh-vacuum conditions. We reveal a thermally induced regioselective cyclization reaction mediated by a radical cascade and resolve the reaction mechanism of the pertaining cyclodefluorination reaction at the single-molecule level. Via intramolecularly resolved probing of the radical-related Kondo signature, we achieve real space visualization of the distribution of the unpaired electron density over specific sites within the corrole radical. Annealing to 550 K initiates intermolecular coupling reactions, producing an extended π-conjugated corrole system.

17.
ACS Nano ; 11(2): 1246-1256, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28135069

RESUMO

Epitaxial growth techniques enable nearly defect free heterostructures with coherent interfaces, which are of utmost importance for high performance electronic devices. While high-vacuum technology-based growth techniques are state-of-the art, here we pursue a purely solution processed approach to obtain nanocrystals with eptaxially coherent and quasi-lattice matched inorganic ligand shells. Octahedral metal-halide clusters, respectively 0-dimensional perovskites, were employed as ligands to match the coordination geometry of the PbS cubic rock-salt lattice. Different clusters (CH3NH3+)(6-x)[M(x+)Hal6](6-x)- (Mx+ = Pb(II), Bi(III), Mn(II), In(III), Hal = Cl, I) were attached to the nanocrystal surfaces via a scalable phase transfer procedure. The ligand attachment and coherence of the formed PbS/ligand core/shell interface was confirmed by combining the results from transmission electron microscopy, small-angle X-ray scattering, nuclear magnetic resonance spectroscopy and powder X-ray diffraction. The lattice mismatch between ligand shell and nanocrystal core plays a key role in performance. In photoconducting devices the best performance (detectivity of 2 × 1011 cm Hz 1/2/W with > 110 kHz bandwidth) was obtained with (CH3NH3)3BiI6 ligands, providing the smallest relative lattice mismatch of ca. -1%. PbS nanocrystals with such ligands exhibited in millimeter sized bulk samples in the form of pressed pellets a relatively high carrier mobility for nanocrystal solids of ∼1.3 cm2/(V s), a carrier lifetime of ∼70 µs, and a low residual carrier concentration of 2.6 × 1013 cm-3. Thus, by selection of ligands with appropriate geometry and bond lengths optimized quasi-epitaxial ligand shells were formed on nanocrystals, which are beneficial for applications in optoelectronics.

18.
Angew Chem Weinheim Bergstr Ger ; 128(7): 2396-2401, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-27478281

RESUMO

Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e- process, while oxygen can be fully reduced to water by a 4 e-/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2-. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes.

19.
Angew Chem Int Ed Engl ; 55(7): 2350-5, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26773287

RESUMO

Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H(+)/4 e(-) process, while oxygen can be fully reduced to water by a 4 e(-)/4 H(+) process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2(-). We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes.

20.
Nanotechnology ; 27(2): 025704, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26629708

RESUMO

Non-trivial arrangement of molecules within a molecular network complicates structure determination due to interdigitation, partial overlap, or stacking. We demonstrate that combined imaging and lateral manipulation with a scanning tunneling microscope resolves the intricate structure of a molecular network in two-dimensions in a straightforward manner. The network, formed by a monolayer of 5,10,15-tris(pentafluorophenyl)-corrole molecules on Ag(111), is manipulated for the first time with single-molecule precision. Our results reveal a shingle-like packing of partially overlapping corrole molecules. Density functional theory calculations support our findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...