Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 57: 34-44, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32247067

RESUMO

Perchloroethene (PCE) is a hazardous and persistent groundwater pollutant. Both treatment with nanoscaled zero-valent iron (nZVI) and biological degradation by bacteria have downsides. Distribution of nZVI underground is difficult and a high percentage of injected nZVI is consumed by anaerobic corrosion, forming H2 rather than being available for PCE dechlorination. On the other hand, microbial PCE degradation can suffer from the absence of H2. This can cause the accumulation of the hazardous metabolites cis-1,2-dichloroethene (DCE) or vinylchloride (VC). The combination of chemical and biological PCE degradation is a promising approach to overcome the disadvantages of each method alone. In this lysimeter study, artificial aquifers were created to test the influence of nZVI on anaerobic microbial PCE dechlorination by a commercially available culture containing Dehalococcoides spp. under field-like conditions. The effect of the combined treatment was investigated with molasses as an additional electron source and after cessation of molasses addition. The combination of nZVI and the Dehalococcoides spp. containing culture led to a PCE discharge in the lysimeter outflow that was 4.7 times smaller than that with nZVI and 1.6 times smaller than with bacterial treatment. Moreover, fully dechlorinated end-products showed an 11-fold increase compared to nZVI and a 4.2-fold increase compared to the microbial culture. The addition of nZVI to the microbial culture also decreased the accumulation of hazardous metabolites by 1.7 (cis-DCE) and 1.2 fold (VC). The stimulatory effect of nZVI on microbial degradation was most obvious after the addition of molasses was stopped.


Assuntos
Ferro/metabolismo , Nanoestruturas/química , Tetracloroetileno/metabolismo , Dehalococcoides/metabolismo , Halogenação , Ferro/química , Tetracloroetileno/química
2.
Sci Total Environ ; 722: 137802, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32199366

RESUMO

The pollutant perchloroethene (PCE) can often be found at urban contaminated sites. Thus in-situ clean-up methods, like remediation using zero valent iron (ZVI) or bacterial dechlorination, are preferred. During the remediation with ZVI particles anaerobic corrosion occurs as an unwanted, particle consuming side reaction with water. However, in this reaction H2 is formed, which is usually scarce during anaerobic microbial dechlorination. Dehalococcoides needs H2 for cell growth using it as an electron donor to dechlorinate chlorinated hydrocarbons. Combining application of ZVI with bacterial dechlorination can turn ZVI in a H2 donor leading to a more controllable bacterial dechlorination, a smaller amount of ZVI suspension and decreased remediation costs. In this study nano- and micro scaled ZVI particles (nZVI, mZVI) were combined in microcosms with two dechlorinating bacterial cultures. The two cultures showed different dechlorination behaviors with ethene and cis-DCE as final products. Phospholipid fatty acids (PLFA) associated with Dehalococcoides (18:1w7, 18:1w7c, 10:Me16:0) and Geobacteriaceae (16,1w7c; 15:0; 16:0) have been found in both bacterial cultures, slight differences in their abundance could explain the different dechlorinating behaviors. The combination of both bacterial cultures with mZVI led to a stimulated dechlorination process leading to about two times higher kobs for PCE dechlorination (0.01-0.05 h-1). In the otherwise cis-DCE accumulating culture complete dechlorination to ethene was achieved. While addition of nZVI inhibited both cultures. Combined with nZVI the completely dechlorinating culture produced lower amounts of dechlorinated products (3.2 µmol) as compared to the single biotic treatment (5.1 µmol). Combining the incompletely dechlorinating culture with nZVI significantly reduced the kobs,PCE (single: 8 × 10-3 ± 3 × 10-4 h-1; combination: 5 × 10-3 ± 2 × 10-4 h-1). H2 produced by nZVI and mZVI was utilized by both bacterial cultures. The particle size, resulting specific surface areas, agglomeration tendencies and reactivity appears to be crucial for the effect on microbial cells.


Assuntos
Chloroflexi , Poluentes Ambientais , Halogenação , Ferro
3.
Int J Phytoremediation ; 18(7): 686-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26684839

RESUMO

Willows were grown in glass cylinders filled with compost above water-saturated quartz sand, to trace the fate of TCE in water and plant biomass. The experiment was repeated once with the same plants in two consecutive years. TCE was added in nominal concentrations of 0, 144, 288, and 721 mg l(-1). Unplanted cylinders were set-up and spiked with nominal concentrations of 721 mg l(-1) TCE in the second year. Additionally, (13)C-enriched TCE solution (δ(13)C = 110.3 ‰) was used. Periodically, TCE content and metabolites were analyzed in water and plant biomass. The presence of TCE-degrading microorganisms was monitored via the measurement of the isotopic ratio of carbon ((13)C/(12)C) in TCE, and the abundance of (13)C-labeled microbial PLFAs (phospholipid fatty acids). More than 98% of TCE was lost via evapotranspiration from the planted pots within one month after adding TCE. Transpiration accounted to 94 to 78% of the total evapotranspiration loss. Almost 1% of TCE was metabolized in the shoots, whereby trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were dominant metabolites; less trichloroethanol (TCOH) and TCE accumulated in plant tissues. Microbial degradation was ruled out by δ(13)C measurements of water and PLFAs. TCE had no detected influence on plant stress status as determined by chlorophyll-fluorescence and gas exchange.


Assuntos
Salix/metabolismo , Poluentes do Solo/metabolismo , Tricloroetileno/metabolismo , Biodegradação Ambiental , Transpiração Vegetal
4.
Sci Total Environ ; 535: 69-78, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26006053

RESUMO

Nanoscale zero-valent iron particles (nZVI) are already applied for in-situ dechlorination of halogenated organic contaminants in the field. We performed batch experiments whereby trichloroethene (TCE) was dehalogenated by nZVI under different environmental conditions that are relevant in practice. The tested conditions include different ionic strengths, addition of polyelectrolytes (carboxymethylcellulose and ligninsulphonate), lowered temperature, dissolved oxygen and different particle contents. Particle properties were determined by Mössbauer spectroscopy, XRD, TEM, SEM, AAS and laser obscuration time measurements. TCE dehalogenation and H2 evolution were decelerated by reduced ionic strength, addition of polyelectrolytes, temperature reduction, the presence of dissolved oxygen and reduced particle content. The partitioning of released electrons between reactions with the contaminant vs. with water (selectivity) was low, independent of the tested conditions. Basically out of hundred electrons that were released via nZVI oxidation only 3.1±1.4 were used for TCE dehalogenation. Even lower selectivities were observed at TCE concentrations below 3.5 mg l(-1), hence particle modifications and/or combination of nZVI with other remediation technologies seem to be necessary to reach target concentrations for remediation. Our results suggest that selectivity is particle intrinsic and not as much condition dependent, hence particle synthesis and potential particle modifications of nZVI particles may be more important for optimization of the pollutant degradation rate, than tested environmental conditions.


Assuntos
Ferro/química , Nanopartículas Metálicas/química , Modelos Químicos , Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA