Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836329

RESUMO

Studying the interaction of inorganic systems with organic ones is a highly important avenue for finding new drugs and treatment methods. Tumor cells show an increased demand for amino acids due to their rapid proliferation; thus, targeting their metabolism is becoming a potential oncological therapeutic strategy. One of the inorganic materials that show antitumor properties is titanium dioxide, while its doping was found to enhance interactions with biological systems. Thus, in this study, we investigated the energy landscape of glutamine (L), an amino acid, on pristine and doped TiO2 surfaces. We first locally optimized 2D-slab structures of pristine and Au/Ag/Cu-doped anatase (001 and 101 surfaces) and similarly optimized a single molecule of glutamine in vacuum. Next, we placed the pre-optimized glutamine molecule in various orientations and on a variety of locations onto the relaxed substrate surfaces (in vacuum) and performed ab initio relaxations of the molecule on the substrate slabs. We employed the DFT method with a GGA-PBE functional implemented in the Quantum Espresso code. Comparisons of the optimized conformations and electronic structures of the amino acid in vacuum and on the surfaces yield useful insights into various biological processes.

2.
R Soc Open Sci ; 9(10): 220436, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36249331

RESUMO

Dehydrogenation and deprotonation of sucrose and trehalose molecules in vacuum is theoretically studied by using ab initio calculations in the framework of the density functional theory. The differences in the structural, electronic, energetic and vibrational properties of dehydrogenated and deprotonated molecules are discussed, depending on the site from which the hydrogen atom or the proton has been removed. The dehydrogenated molecules are found to be stable, regardless of which hydrogen atom is removed. This contrasts with the instability of the deprotonated molecules, where break-ups or structural reorganizations of the molecule are observed in 20-30% of the cases, but only when the hydrogen atom whose proton is removed was bonded to a carbon atom. Considering the stability and possible rearrangements of the hydrogen network of the deprotonated/dehydrogenated molecule, the formation of additional hydrogen-bridge bonds compared with the nominal molecule appears to be more pronounced for the deprotonated molecules than for the dehydrogenated ones. Moreover, our calculations show that the hydrogen-transfer energy barriers are usually larger for the deprotonated molecules than for the dehydrogenated ones. Finally, compared with the nominal molecule, the vibrational frequency spectrum is shifted to lower frequencies for both the dehydrogenated and the deprotonated molecules.

3.
Nanomaterials (Basel) ; 12(9)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35564304

RESUMO

We report on a new class of ZnO/ZnS nanomaterials based on the wurtzite/sphalerite architecture with improved electronic properties. Semiconducting properties of pristine ZnO and ZnS compounds and mixed ZnO1-xSx nanomaterials have been investigated using ab initio methods. In particular, we present the results of our theoretical investigation on the electronic structure of the ZnO1-xSx (x = 0.20, 0.25, 0.33, 0.50, 0.60, 0.66, and 0.75) nanocrystalline polytypes (2H, 3C, 4H, 5H, 6H, 8H, 9R, 12R, and 15R) calculated using hybrid PBE0 and HSE06 functionals. The main observations are the possibility of alternative polytypic nanomaterials, the effects of structural features of such polytypic nanostructures on semiconducting properties of ZnO/ZnS nanomaterials, the ability to tune the band gap as a function of sulfur content, as well as the influence of the location of sulfur layers in the structure that can dramatically affect electronic properties. Our study opens new fields of ZnO/ZnS band gap engineering on a multi-scale level with possible applications in photovoltaics, light-emitting diodes, laser diodes, heterojunction solar cells, infrared detectors, thermoelectrics, or/and nanostructured ceramics.

4.
Entropy (Basel) ; 22(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-33286835

RESUMO

Nano-size machines are moving from only being topics of basic research to becoming elements in the toolbox of engineers, and thus the issue of optimally controlling their work cycles becomes important. Here, we investigate hydrogen atom-like systems as working fluids in thermodynamic engines and their optimal control in minimizing entropy or excess heat production in finite-time processes. The electronic properties of the hydrogen atom-like system are controlled by a parameter κ reflecting changes in, e.g., the effective dielectric constant of the medium where the system is embedded. Several thermodynamic cycles consisting of combinations of iso-κ, isothermal, and adiabatic branches are studied, and a possible a-thermal cycle is discussed. Solving the optimal control problem, we show that the minimal thermodynamic length criterion of optimality for finite-time processes also applies to these cycles for general statistical mechanical systems that can be controlled by a parameter κ, and we derive an appropriate metric in probability distribution space. We show how the general formulas we have obtained for the thermodynamic length are simplified for the case of the hydrogen atom-like system, and compute the optimal distribution of process times for a two-state approximation of the hydrogen atom-like system.

5.
Inorg Chem ; 54(3): 782-91, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25247766

RESUMO

We model the deposition and growth of MgF(2) on a sapphire substrate as it occurs in a low-temperature atom-beam-deposition experiment. In the experiment, an (X-ray) amorphous film of MgF(2) is obtained at low temperatures of 170-180 K, and upon heating, this transforms to the expected rutile phase via the CaCl(2)-type structure. We confirm this from our simulations and propose a mechanism for this transformation. The growth process is analyzed as a function of the synthesis parameters, which include the substrate temperature, deposition rate of clusters, and types of clusters deposited. Upon annealing an initially amorphous deposit, we observe the formation of two competing nanocrystalline modifications during this process, which exhibit the CaCl(2) and CdI(2) structure types, respectively. We argue that this joint growth of the two nanocrystalline polymorphs stabilizes the kinetically unstable CaCl(2)-type structure on the macroscopic level long enough to be observed in the experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...