Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(11): e0130023, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37888981

RESUMO

IMPORTANCE: We report here efforts to benchmark performance of two widespread approaches for virome analysis, which target either virion-associated nucleic acids (VANA) or highly purified double-stranded RNAs (dsRNAs). This was achieved using synthetic communities of varying complexity levels, up to a highly complex community of 72 viral agents (115 viral molecules) comprising isolates from 21 families and 61 genera of plant viruses. The results obtained confirm that the dsRNA-based approach provides a more complete representation of the RNA virome, in particular, for high complexity ones. However, for viromes of low to medium complexity, VANA appears a reasonable alternative and would be the preferred choice if analysis of DNA viruses is of importance. Several parameters impacting performance were identified as well as a direct relationship between the completeness of virome description and sample sequencing depth. The strategy, results, and tools used here should prove useful in a range of virome analysis efforts.


Assuntos
Metagenômica , Biologia Sintética , Viroma , Vírus , Vírus de DNA/classificação , Vírus de DNA/genética , Metagenômica/métodos , Metagenômica/normas , Vírion/genética , Viroma/genética , Biologia Sintética/métodos , RNA de Cadeia Dupla/genética , Vírus/classificação , Vírus/genética , Vírus de Plantas/classificação , Vírus de Plantas/genética
2.
PLoS One ; 18(8): e0290108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585477

RESUMO

High-throughput sequencing (HTS) has proven a powerful tool to uncover the virome of cultivated and wild plants and offers the opportunity to study virus movements across the agroecological interface. The carrot model consisting of cultivated (Daucus carota ssp. sativus) and wild carrot (Daucus carota ssp. carota) populations, is particularly interesting with respect to comparisons of virus communities due to the low genetic barrier to virus flow since both population types belong to the same plant species. Using a highly purified double-stranded RNA-based HTS approach, we analyzed on a large scale the virome of 45 carrot populations including cultivated, wild and off-type carrots (carrots growing within the field and likely representing hybrids between cultivated and wild carrots) in France and six additional carrot populations from central Spain. Globally, we identified a very rich virome comprising 45 viruses of which 25 are novel or tentatively novel. Most of the identified novel viruses showed preferential associations with wild carrots, either occurring exclusively in wild populations or infecting only a small proportion of cultivated populations, indicating the role of wild carrots as reservoir of viral diversity. The carrot virome proved particularly rich in viruses involved in complex mutual interdependencies for aphid transmission such as poleroviruses, umbraviruses and associated satellites, which can be the basis for further investigations of synergistic or antagonistic virus-vector-host relationships.


Assuntos
Daucus carota , Daucus carota/genética , Espanha , Viroma/genética , França
3.
Phytopathology ; 113(9): 1729-1744, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37399026

RESUMO

High-throughput sequencing (HTS) and sequence mining tools revolutionized virus detection and discovery in recent years, and implementing them with classical plant virology techniques results in a powerful approach to characterize viruses. An example of a virus discovered through HTS is Solanum nigrum ilarvirus 1 (SnIV1) (Bromoviridae), which was recently reported in various solanaceous plants from France, Slovenia, Greece, and South Africa. It was likewise detected in grapevines (Vitaceae) and several Fabaceae and Rosaceae plant species. Such a diverse set of source organisms is atypical for ilarviruses, thus warranting further investigation. In this study, modern and classical virological tools were combined to accelerate the characterization of SnIV1. Through HTS-based virome surveys, mining of sequence read archive datasets, and a literature search, SnIV1 was further identified from diverse plant and non-plant sources globally. SnIV1 isolates showed relatively low variability compared with other phylogenetically related ilarviruses. Phylogenetic analyses showed a distinct basal clade of isolates from Europe, whereas the rest formed clades of mixed geographic origin. Furthermore, systemic infection of SnIV1 in Solanum villosum and its mechanical and graft transmissibility to solanaceous species were demonstrated. Near-identical SnIV1 genomes from the inoculum (S. villosum) and inoculated Nicotiana benthamiana were sequenced, thus partially fulfilling Koch's postulates. SnIV1 was shown to be seed-transmitted and potentially pollen-borne, has spherical virions, and possibly induces histopathological changes in infected N. benthamiana leaf tissues. Overall, this study provides information to better understand the diversity, global presence, and pathobiology of SnIV1; however, its possible emergence as a destructive pathogen remains uncertain. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Ilarvirus , Solanum , Filogenia , Doenças das Plantas , Nicotiana
4.
Arch Virol ; 167(11): 2407-2409, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35962825

RESUMO

We report the discovery of a new flavi-like virus identified in wild carrots (Daucus carota subsp. carota), using a double-stranded (ds)RNA high-throughput sequencing (HTS) approach. The new virus, tentatively named "carrot flavi-like virus 1" (CtFLV-1), has a large genome of 21.8 kb that harbours a single open reading frame encoding a 7,078-aa polyprotein with conserved RNA helicase (Hel) and RNA-dependent RNA polymerase (RdRp) domains. The new virus is phylogenetically related to recently described flavi-like viruses from arthropods, but its closest relative is a plant-associated virus, gentian Kobu-sho-associated virus (GKSaV). A pairwise comparison showed that these two viruses share 38.4% amino acid (aa) sequence identity in their polyproteins and 73% and 47.8% aa sequence identity in their conserved RdRp and Hel domains, respectively. Based on their similar genome organization and phylogenetic relationship, GKSaV and CtFLV-1 could form the basis for a new genus of plant-associated viruses, possibly within the family Flaviviridae, for which the name "Koshovirus" is proposed.


Assuntos
Daucus carota , Vírus de Plantas , Vírus de RNA , Aminoácidos/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , Vírus de Plantas/genética , Poliproteínas/genética , RNA Helicases/genética , Vírus de RNA/genética , RNA de Cadeia Dupla , RNA Viral/genética , RNA Polimerase Dependente de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA