Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7932, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566254

RESUMO

Dendrites of hippocampal CA1 pyramidal cells amplify clustered glutamatergic input by activation of voltage-gated sodium channels and N-methyl-D-aspartate receptors (NMDARs). NMDAR activity depends on the presence of NMDAR co-agonists such as D-serine, but how co-agonists influence dendritic integration is not well understood. Using combinations of whole-cell patch clamp, iontophoretic glutamate application, two-photon excitation fluorescence microscopy and glutamate uncaging in acute rat and mouse brain slices we found that exogenous D-serine reduced the threshold of dendritic spikes and increased their amplitude. Triggering an astrocytic mechanism controlling endogenous D-serine supply via endocannabinoid receptors (CBRs) also increased dendritic spiking. Unexpectedly, this pathway was activated by pyramidal cell activity primarily in the theta range, which required HCN channels and astrocytic CB1Rs. Therefore, astrocytes close a positive and frequency-dependent feedback loop between pyramidal cell activity and their integration of dendritic input. Its disruption in mice led to an impairment of spatial memory, which demonstrated its behavioral relevance.


Assuntos
Astrócitos , Região CA1 Hipocampal , Dendritos , Aprendizagem Espacial , Animais , Camundongos , Ratos , Astrócitos/fisiologia , Dendritos/fisiologia , Ácido Glutâmico/metabolismo , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Aprendizagem Espacial/fisiologia , Região CA1 Hipocampal/fisiologia
2.
Cell Rep ; 39(3): 110696, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443170

RESUMO

Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release. Position RIMS1045 is necessary and sufficient for expression of silencing-induced homeostatic plasticity and is kept phosphorylated by serine arginine protein kinase 2 (SRPK2). SRPK2-induced upscaling of synaptic release leads to additional RIM1 nanoclusters and docked vesicles at the AZ and is not observed in the absence of RIM1 and occluded by RIMS1045E. Our data suggest that SRPK2 and RIM1 represent a presynaptic phosphosignaling hub that is involved in the homeostatic balance of synaptic coupling of neuronal networks.


Assuntos
Transmissão Sináptica , Vesículas Sinápticas , Animais , Proteínas de Ligação ao GTP/metabolismo , Homeostase/fisiologia , Mamíferos/metabolismo , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
3.
Cell Mol Life Sci ; 73(18): 3599-621, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27015872

RESUMO

CASK, a MAGUK family protein, is an essential protein present in the presynaptic compartment. CASK's cellular role is unknown, but it interacts with multiple proteins important for synapse formation and function, including neurexin, liprin-α, and Mint1. CASK phosphorylates neurexin in a divalent ion-sensitive manner, although the functional relevance of this activity is unclear. Here we find that liprin-α and Mint1 compete for direct binding to CASK, but neurexin1ß eliminates this competition, and all four proteins form a complex. We describe a novel mode of interaction between liprin-α and CASK when CASK is bound to neurexin1ß. We show that CASK phosphorylates neurexin, modulating the interaction of liprin-α with the CASK-neurexin1ß-Mint1 complex. Thus, CASK creates a regulatory and structural link between the presynaptic adhesion molecule neurexin and active zone organizer, liprin-α. In neuronal culture, CASK appears to regulate the stability of neurexin by linking it with this multi-protein presynaptic active zone complex.


Assuntos
Guanilato Quinases/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio , Membrana Celular/metabolismo , Células Cultivadas , Feminino , Guanilato Quinases/química , Guanilato Quinases/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/química , Neurônios/citologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/genética , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...