Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473298

RESUMO

The Epstein-Barr virus (EBV) is accepted as a primary risk factor for certain nasopharyngeal carcinoma (NPC) subtypes, where the virus persists in a latent stage which is thought to contribute to tumorigenesis. Current treatments are sub-optimal, and recurrence occurs in many cases. An alternative therapeutic concept is aimed at triggering the lytic cycle of EBV selectively in tumor cells as a means to add clinical benefit. While compounds able to stimulate the lytic cascade have been identified, their clinical application so far has been limited. We are developing a novel anticancer molecule, NEO212, that was generated by covalent conjugation of the alkylating agent temozolomide (TMZ) to the naturally occurring monoterpene perillyl alcohol (POH). In the current study, we investigated its potential to trigger the lytic cycle of EBV in NPC cells in vitro and in vivo. We used the established C666.1 cell line and primary patient cells derived from the brain metastasis of a patient with NPC, both of which harbored latent EBV. Upon treatment with NEO212, there was an increase in EBV proteins Zta and Ea-D, key markers of the lytic cycle, along with increased levels of CCAAT/enhancer-binding protein homologous protein (CHOP), a marker of endoplasmic reticulum (ER) stress, followed by the activation of caspases. These effects could also be confirmed in tumor tissue from mice implanted with C666.1 cells. Towards a mechanistic understanding of these events, we used siRNA-mediated knockdown of CHOP and inclusion of anti-oxidant compounds. Both approaches blocked lytic cycle induction by NEO212. Therefore, we established a sequence of events, where NEO212 caused reactive oxygen species (ROS) production, which triggered ER stress and elevated the levels of CHOP, which was required to stimulate the lytic cascade of EBV. Inclusion of the antiviral agent ganciclovir synergistically enhanced the cytotoxic impact of NEO212, pointing to a potential combination treatment for EBV-positive cancers which should be explored further. Overall, our study establishes NEO212 as a novel agent able to stimulate EBV's lytic cycle in NPC tumors, with implications for other virus-associated cancers.

2.
J Neurosurg ; 140(6): 1549-1557, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157532

RESUMO

OBJECTIVE: Malignancies of the CNS are difficult to treat because the blood-brain barrier (BBB) prevents most therapeutics from reaching the intracranial lesions at sufficiently high concentrations. This also applies to chimeric antigen receptor (CAR) T cells, for which systemic delivery is inferior to direct intratumoral or intraventricular injection of the cells. The authors previously reported on a novel approach to safely and reversibly open the BBB of mice by applying intra-arterial (IA) injections of NEO100, a pharmaceutical-grade version of the natural monoterpene perillyl alcohol. The authors hypothesized that this method would enable enhanced brain entry and therapeutic activity of intravenously delivered CAR T cells, which the authors tested in a mouse model of CNS lymphoma. METHODS: Human Raji lymphoma cells were implanted into the brains of immune-deficient mice. After tumor uptake was confirmed with bioluminescent imaging, 0.3% NEO100 was injected intra-arterially, which was followed by intravenous (IV) delivery of CD19-targeted CAR T cells. After this single intervention, tumor growth was monitored with imaging, long-term survival of mice was recorded, and select mice were euthanized to analyze the distribution of CAR T cells in brain tissue. RESULTS: Intravenously injected CAR T cells could be readily detected in brain tumor areas after IA injection of NEO100 but not after IA injection of the vehicle (without NEO100). Although all untreated control animals died within 3 weeks, all mice that received IA NEO100 followed by IV CAR T cells survived and thrived for 200 days, when the experiment was terminated. Of the mice that received IV CAR T cells without prior IA NEO100, 3 died within 3 weeks and 2 survived long-term. CONCLUSIONS: BBB opening by IA NEO100 facilitates brain entry of intravenously delivered CD19 CAR T cells. The long-term survival of all mice with CNS lymphoma, along with the disappearance of the tumor as determined with imaging, suggests that this one-time therapeutic intervention was curative. BBB opening by IA NEO100 may offer a novel option to increase brain access by CAR T cells.


Assuntos
Imunoterapia Adotiva , Injeções Intra-Arteriais , Receptores de Antígenos Quiméricos , Animais , Camundongos , Imunoterapia Adotiva/métodos , Modelos Animais de Doenças , Barreira Hematoencefálica , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Linhagem Celular Tumoral/transplante , Linfoma/terapia , Linfoma/imunologia , Neoplasias do Sistema Nervoso Central/terapia , Neoplasias do Sistema Nervoso Central/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Camundongos SCID
3.
Autophagy ; 19(12): 3169-3188, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37545052

RESUMO

Glioblastoma (GBM) is the most aggressive primary brain tumor, exhibiting a high rate of recurrence and poor prognosis. Surgery and chemoradiation with temozolomide (TMZ) represent the standard of care, but, in most cases, the tumor develops resistance to further treatment and the patients succumb to disease. Therefore, there is a great need for the development of well-tolerated, effective drugs that specifically target chemoresistant gliomas. NEO214 was generated by covalently conjugating rolipram, a PDE4 (phosphodiesterase 4) inhibitor, to perillyl alcohol, a naturally occurring monoterpene related to limonene. Our previous studies in preclinical models showed that NEO214 harbors anticancer activity, is able to cross the blood-brain barrier (BBB), and is remarkably well tolerated. In the present study, we investigated its mechanism of action and discovered inhibition of macroautophagy/autophagy as a key component of its anticancer effect in glioblastoma cells. We show that NEO214 prevents autophagy-lysosome fusion, thereby blocking autophagic flux and triggering glioma cell death. This process involves activation of MTOR (mechanistic target of rapamycin kinase) activity, which leads to cytoplasmic accumulation of TFEB (transcription factor EB), a critical regulator of genes involved in the autophagy-lysosomal pathway, and consequently reduced expression of autophagy-lysosome genes. When combined with chloroquine and TMZ, the anticancer impact of NEO214 is further potentiated and unfolds against TMZ-resistant cells as well. Taken together, our findings characterize NEO214 as a novel autophagy inhibitor that could become useful for overcoming chemoresistance in glioblastoma.Abbreviations: ATG: autophagy related; BAFA1: bafilomycin A1; BBB: blood brain barrier; CQ: chloroquine; GBM: glioblastoma; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MGMT: O-6-methylguanine-DNA methyltransferase; MTOR: mechanistic target of rapamycin kinase; MTORC: MTOR complex; POH: perillyl alcohol; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TMZ: temozolomide.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Autofagia/genética , Rolipram/metabolismo , Rolipram/farmacologia , Rolipram/uso terapêutico , Morte Celular , Monoterpenos/farmacologia , Monoterpenos/metabolismo , Monoterpenos/uso terapêutico , Glioma/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sirolimo/farmacologia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Lisossomos/metabolismo
5.
Cells ; 12(6)2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36980272

RESUMO

Despite important advances in the pre-clinical animal studies investigating the neuroinhibitory microenvironment at the injury site, traumatic injury to the spinal cord remains a major problem with no concrete response. Here, we examined whether (1) intranasal (IN) administration of miR133b/Ago2 can reach the injury site and achieve a therapeutic effect and (2) NEO100-based formulation of miR133b/Ago2 can improve effectiveness. 24 h after a cervical contusion, C57BL6 female mice received IN delivery of miR133b/Ago2 or miR133b/Ago2/NEO100 for 3 days, one dose per day. The pharmacokinetics of miR133b in the spinal cord lesion was determined by RT-qPCR. The role of IN delivery of miR133b on motor function was assessed by the grip strength meter (GSM) and hanging tasks. The activity of miR133b at the lesion site was established by immunostaining of fibronectin 1 (FN1), a miR133b target. We found that IN delivery of miR133b/Ago2 (1) reaches the lesion scar and co-administration of miR133b with NEO100 facilitated the cellular uptake; (2) enhanced the motor function and addition of NEO100 potentiated this effect and (3) targeted FN1 expression at the lesion scar. Our results suggest a high efficacy of IN delivery of miR133b/Ago2 to the injured spinal cord that translates to improved healing with NEO100 further potentiating this effect.


Assuntos
MicroRNAs , Traumatismos da Medula Espinal , Animais , Feminino , Camundongos , Administração Intranasal , Proteínas Argonautas/farmacologia , Proteínas Argonautas/uso terapêutico , Cicatriz/patologia , Contusões , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia
6.
J Neurosurg ; 139(3): 822-830, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738464

RESUMO

OBJECTIVE: Immune checkpoint-inhibitory therapeutic antibodies have shown striking activity against several types of cancers but are less effective against brain-localized malignancies, in part due to the protective effect of the blood-brain barrier (BBB). The authors hypothesized that intraarterial (IA) delivery of a novel compound, NEO100, has the potential to safely and reversibly open the BBB to enable brain-targeted therapeutic activity of checkpoint-inhibitory antibodies. METHODS: Immunocompetent mice with syngeneic glioblastoma or melanoma cells implanted into their brains were subjected to a single IA injection of NEO100 to open their BBB. One dose of murine anti-PD-1/PD-L1 antibody was either coinjected with NEO100 or separately injected intravenously. Brain penetration of these antibodies and levels of CD8+ T cell infiltrate into the tumor microenvironment were quantitated and animal survival was monitored. RESULTS: IA NEO100 enabled the increased accumulation of checkpoint-inhibitory antibodies in the brain, along with greater numbers of T cells. In both malignancy models, a single intervention of IA NEO100 combined with antibody resulted in the long-term survival of animals. Antibody treatment in the absence of NEO100 was far less effective. CONCLUSIONS: BBB opening by IA NEO100 facilitates brain tumor access by checkpoint-inhibitory antibodies and enables their therapeutic activity, along with increased levels of T-cell recruitment.


Assuntos
Neoplasias Encefálicas , Carcinoma , Animais , Camundongos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Imunoterapia/métodos , Encéfalo , Microambiente Tumoral
7.
Cancers (Basel) ; 14(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36551551

RESUMO

Many patients with acute myeloid leukemia (AML) are still dying from this disease. In the past, the alkylating agent temozolomide (TMZ) has been investigated for AML and found to be partially effective; however, the presence of O6-methylguanine DNA methyltransferase (MGMT; a DNA repair enzyme) in tumor cells confers profound treatment resistance against TMZ. We are developing a novel anticancer compound, called NEO212, where TMZ was covalently conjugated to perillyl alcohol (a naturally occurring monoterpene). NEO212 has revealed robust therapeutic activity in a variety of preclinical cancer models, including AML. In the current study, we investigated its impact on a panel of human AML cell lines and found that it exerted cytotoxic potency even against MGMT-positive cells that were highly resistant to TMZ. Furthermore, NEO212 strongly stimulated the expression of a large number of macrophage-associated marker genes, including CD11b/ITGAM. This latter effect could not be mimicked when cells were treated with TMZ or an equimolar mix of individual agents, TMZ plus perillyl alcohol. The superior cytotoxic impact of NEO212 appeared to involve down-regulation of MGMT protein levels. In a mouse model implanted with TMZ-resistant, MGMT-positive AML cells, two 5-day cycles of 25 mg/kg NEO212 achieved an apparent cure, as mice survived >300 days without any signs of disease. In parallel toxicity studies with rats, a 5-day cycle of 200 mg/kg NEO212 was well tolerated by these animals, whereas animals that were given 200 mg/kg TMZ all died due to severe leukopenia. Together, our results show that NEO212 exerts pleiotropic effects on AML cells that include differentiation, proliferation arrest, and eventual cell death. In vivo, NEO212 was well tolerated even at dosages that far exceed the therapeutic need, indicating a large therapeutic window. These results present NEO212 as an agent that should be considered for development as a therapeutic agent for AML.

8.
J Neurosurg Case Lessons ; 4(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36088606

RESUMO

BACKGROUND: Intranasal delivery of NEO100, a pharmaceutical-grade version of the natural monoterpene perillyl alcohol (POH), is undergoing clinical phase IIa testing as a treatment for glioblastoma (GBM). However, so far there is no evidence that intranasal delivery of NEO100 indeed results in POH reaching intracranial malignancies in a patient. OBSERVATIONS: After surgical removal of her recurrent GBM tumor, a patient received daily intranasal NEO100 therapy for more than 3 years before a second recurrence emerged. At that time, a final dose of NEO100 was given shortly before the tumor tissue was surgically removed, and the tissue was processed for high-performance liquid chromatography analysis of POH and its primary metabolite, perillic acid (PA). Both molecules could readily be detected in the tumor tissue. LESSONS: This is the first demonstration of POH and PA in brain tumor tissue from any patient. It reveals that intranasal administration of NEO100 is a valid approach to achieve delivery of this agent to a brain tumor. In view of the noninvasive and safe nature of this method, along with tentative indications of activity, our findings add confidence to the notion that intranasal administration of NEO100 holds potential as a new treatment option for brain-localized malignancies.

9.
Sci Rep ; 12(1): 12006, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835845

RESUMO

Tumor cells face constant stress of ischemic (nutrient paucity and hypoxia) environment when they migrate and invade too fast to outgrow the nearest blood vessels. During the temporary loss of support from circulation, the tumor cells must act self-sufficient to survive and then to migrate to re-connect with the nearest blood supply or die. We have previously reported that ablation of the low-density lipoprotein receptor-related protein 1 (LRP-1) completely nullified the ability of tumour cells to migrate and invade under serum-free conditions in vitro and to form tumours in vivo. The mechanism behind the important function by cell surface LRP-1 was not fully understood. Herein we show that LRP-1 orchestrates two parallel cell surface signalling pathways to support the full constitutive tumour cell migration. First, LRP-1 stabilizes activated epidermal growth factor receptor (EGFR) to contribute half of the pro-motility signalling. Second, LRP-1 mediates secreted Hsp90α autocrine signalling to bring the other half of pro-motility signalling. Only combined inhibitions of the EGFR signalling and the eHsp90α autocrine signalling led to the full blockade of the tumour cell migration as the LRP-1 depletion did. This finding uncovers a novel mechanism by which certain breast cancer cells use LRP-1 to engage parallel signalling pathways to move when they lose contact with blood support.


Assuntos
Neoplasias da Mama , Movimento Celular , Receptores ErbB/metabolismo , Feminino , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Transdução de Sinais
10.
Front Oncol ; 12: 934638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837107

RESUMO

Background: Glioblastoma (GBM) is the most common primary, malignant brain tumor in adults and has a poor prognosis. The median progression-free survival (mPFS) of newly diagnosed GBM is approximately 6 months. The recurrence rate approaches 100%, and the case-fatality ratio approaches one. Half the patients die within 8 months of recurrence, and 5-year survival is less than 10%. Advances in treatment options are urgently needed. We report on the efficacy and safety of a therapeutic vaccine (SITOIGANAP: Epitopoietic Research Corporation) administered to 21 patients with recurrent GBM (rGBM) under a Right-to-Try/Expanded Access program. SITOIGANAP is composed of both autologous and allogeneic tumor cells and lysates. Methods: Twenty-one patients with rGBM received SITOIGANAP on 28-day cycles in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), cyclophosphamide, bevacizumab, and an anti-programmed cell death protein-1 (anti-PD-1) monoclonal antibody (either nivolumab or pembrolizumab). Results: The mPFS was 9.14 months, and the median overall survival (mOS) was 19.63 months from protocol entry. Currently, 14 patients (67%) are at least 6 months past their first SITOIGANAP cycle; 10 patients (48%) have received at least six cycles and have a mOS of 30.64 months and 1-year survival of 90%. The enrollment and end-of-study CD3+/CD4+ T-lymphocyte counts strongly correlate with OS. Conclusions: The addition of SITOIGANAP/GM-CSF/cyclophosphamide to bevacizumab and an anti-PD-1 monoclonal antibody resulted in a significant survival benefit compared to historic control values in rGBM with minimal toxicity compared to current therapy.

11.
Mol Cell Biol ; 42(2): e0045921, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34871064

RESUMO

The rare capacity for heat shock protein 90 (Hsp90) chaperones to support almost the entire cellular signaling network was viewed as a potential breakthrough to combat tumor resistance to single-oncogene-based therapeutics. Over 2 decades, several generations of Hsp90 ATP binding inhibitors have entered numerous cancer clinical trials, but few have advanced to FDA approval for treatment of human cancers. Herein, we report that Hsp90 expression varies dramatically, especially among different types of noncancer cells and organs. The highly variable levels of Hsp90, from as low as 1.7% to as high as 9% of their total cellular proteins, were responsible for either an extreme sensitivity or an extreme resistance to a classical Hsp90 ATP-binding inhibitor. Among randomly selected cancer cell lines, the same client proteins for regulation of cell growth exhibited unexpectedly heterogenous reactions in response to an Hsp90 ATP-binding inhibitor, inconsistent with the current understanding. Finally, a minimum amount (<10%) of Hsp90ß was still required for client protein stability and cell survival even in the presence of full Hsp90α. These new findings of Hsp90 expression in host and isoform compensation in tumor cells could complicate biomarker selection, toxicity readout, and clinical efficacy of Hsp90-ATP-binding inhibitors in cancer clinical trials.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias/tratamento farmacológico , Isoformas de Proteínas/genética , Trifosfato de Adenosina/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos
12.
Pharmaceutics ; 13(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34959448

RESUMO

Perillyl alcohol (POH) is a naturally occurring monoterpenoid related to limonene that is present in the essential oils of various plants. It has diverse applications and can be found in household items, including foods, cosmetics, and cleaning supplies. Over the past three decades, it has also been investigated for its potential anticancer activity. Clinical trials with an oral POH formulation administered to cancer patients failed to realize therapeutic expectations, although an intra-nasal POH formulation yielded encouraging results in malignant glioma patients. Based on its amphipathic nature, POH revealed the ability to overcome biological barriers, primarily the blood-brain barrier (BBB), but also the cytoplasmic membrane and the skin, which appear to be characteristics that critically contribute to POH's value for drug development and delivery. In this review, we present the physicochemical properties of POH that underlie its ability to overcome the obstacles placed by different types of biological barriers and consequently shape its multifaceted promise for cancer therapy and applications in drug development. We summarized and appraised the great variety of preclinical and clinical studies that investigated the use of POH for intranasal delivery and nose-to-brain drug transport, its intra-arterial delivery for BBB opening, and its permeation-enhancing function in hybrid molecules, where POH is combined with or conjugated to other therapeutic pharmacologic agents, yielding new chemical entities with novel mechanisms of action and applications.

14.
Cancers (Basel) ; 13(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298603

RESUMO

Despite progress in the treatment of acute myeloid leukemia (AML), the clinical outcome remains suboptimal and many patients are still dying from this disease. First-line treatment consists of chemotherapy, which typically includes cytarabine (AraC), either alone or in combination with anthracyclines, but drug resistance can develop and significantly worsen prognosis. Better treatments are needed. We are developing a novel anticancer compound, NEO212, that was created by covalent conjugation of two different molecules with already established anticancer activity, the alkylating agent temozolomide (TMZ) and the natural monoterpene perillyl alcohol (POH). We investigated the anticancer activity of NEO212 in several in vitro and in vivo models of AML. Human HL60 and U937 AML cell lines, as well as different AraC-resistant AML cell lines, were treated with NEO212 and effects on cell proliferation, cell cycle, and cell death were investigated. Mice with implanted AraC-sensitive or AraC-resistant AML cells were dosed with oral NEO212, and animal survival was monitored. Our in vitro experiments show that treatment of cells with NEO212 results in growth inhibition via potent G2 arrest, which is followed by apoptotic cell death. Intriguingly, NEO212 was equally potent in highly AraC-resistant cells. In vivo, NEO212 treatment strikingly extended survival of AML mice and the majority of treated mice continued to thrive and survive without any signs of illness. At the same time, we were unable to detect toxic side effects of NEO212 treatment. All in all, the absence of side effects, combined with striking therapeutic activity even in an AraC-resistant context, suggests that NEO212 should be developed further toward clinical testing.

17.
Cancer Gene Ther ; 28(9): 1058-1070, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33664459

RESUMO

Hypoxia-inducible factor-1 (HIF-1), a master transcriptional factor for protecting cells from hypoxia, plays a critical role in spermatogenesis and tumorigenesis. For the past two decades, numerous small molecule inhibitors that block mRNA synthesis, protein translation, or DNA binding of HIF-1α have entered clinical trials. To date, few have advanced to FDA approval for clinical applications due to limited efficacy at their toxicity-tolerable dosages. New windows for developing effective and safe therapeutics require better understanding of the specific mechanism of action. The finding that a chaperone-defective mutant heat shock protein-90-alpha (Hsp90α) blocks spermatogenesis, a known hypoxia-driven process in mouse testis prompted us to focus on the role of Hsp90α in HIF-1α. Here we demonstrate that Hsp90α gene knockout causes a dramatic reduction of the high steady-state level of HIF-1α in the testis, blocking sperm production and causing infertility of the mice. In HIF-1α-dependent tumor cells, we found that Hsp90α forms protein complexes with hypoxia-elevated HIF-1α and Hsp90α knockout prevents hypoxia-induced HIF-1α accumulation. In contrast, downregulation of Hsp90ß had little effect on hypoxia-induced accumulation of HIF-1α. Instead, Hsp90ß protects signaling molecules responsible for cellular homeostasis from assault by 17-AAG (17-N-allylamino-17-demethoxygeldanamycin), a general ATPase inhibitor of both Hsp90α and Hsp90ß. Since targeting Hsp90ß gene is lethal in both cultured cells and in mice, our new finding explains the toxicity of the previous inhibitor trials and identifies the specific binding of Hsp90α to HIF-1α as a new therapeutic window for developing safer and more effective treatment of male infertility and cancer.


Assuntos
Carcinogênese/genética , Proteínas de Choque Térmico HSP90/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Espermatogênese/genética , Animais , Transformação Celular Neoplásica , Humanos , Masculino , Camundongos , Camundongos Knockout
18.
Neuro Oncol ; 23(10): 1656-1667, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33659980

RESUMO

BACKGROUND: The antitumor efficacy of human epidermal growth factor receptor 2 (HER2)-targeted therapies, such as humanized monoclonal antibody trastuzumab (Herceptin®, Roche), in patients with breast-to-brain cancer metastasis is hindered by the low permeability of the blood-brain barrier (BBB). NEO100 is a high-purity version of the natural monoterpene perillyl alcohol, produced under current good manufacturing practice (cGMP) regulations, that was shown previously to reversibly open the BBB in rodent models. Here we investigated whether NEO100 could enable brain entry of trastuzumab to achieve greater therapeutic activity. METHODS: An in vitro BBB, consisting of human astrocytes and brain endothelial cells, was used to determine trastuzumab penetration in the presence or absence of NEO100. For in vivo studies, we administered intravenous (IV) trastuzumab or the trastuzumab-drug conjugate ado-trastuzumab emtansine (T-DM1; Kadcyla®, Roche), to mouse models harboring intracranial HER2+ breast cancer, with or without BBB opening via IA NEO100. Brain and tumor tissues were examined for the presence of trastuzumab and infiltration of immune cells. Therapeutic impact was evaluated based on overall survival. RESULTS: NEO100 greatly increased trastuzumab penetration across an in vitro BBB. In vivo, IA NEO100-mediated BBB opening resulted in brain tumor-selective accumulation of trastuzumab, without detectable presence in normal brain tissue, along with increased presence of immune cell populations. IV delivery of trastuzumab or T-DM1 achieved significantly greater overall survival of tumor-bearing mice when combined with IA NEO100. CONCLUSION: IA NEO100 facilitates brain tumor entry of trastuzumab and T-DM1 and significantly enhances their therapeutic efficacy, along with increased antibody-dependent immune cell recruitment.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Trastuzumab/administração & dosagem , Animais , Barreira Hematoencefálica , Encéfalo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Células Endoteliais , Feminino , Humanos , Camundongos , Monoterpenos , Receptor ErbB-2
19.
Neurooncol Adv ; 3(1): vdab005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604574

RESUMO

BACKGROUND: Better treatments for glioblastoma (GBM) patients, in particular in the recurrent setting, are urgently needed. Clinical trials performed in Brazil indicated that intranasal delivery of perillyl alcohol (POH) might be effective in this patient group. NEO100, a highly purified version of POH, was current good manufacturing practice (cGMP) manufactured to evaluate the safety and efficacy of this novel approach in a Phase I/IIa clinical trial in the United States. METHODS: A total of 12 patients with recurrent GBM were enrolled into Phase I of this trial. NEO100 was administered by intranasal delivery using a nebulizer and nasal mask. Dosing was 4 times a day, every day. Four cohorts of 3 patients received the following dosages: 96 mg/dose (384 mg/day), 144 mg/dose (576 mg/day), 192 mg/dose (768 mg/day), and 288 mg/dose (1152 mg/day). Completion of 28 days of treatment was recorded as 1 cycle. Adverse events were documented, and radiographic response via Response Assessment in Neuro-Oncology (RANO) criteria was evaluated every 2 months. Progression-free and overall survival were determined after 6 and 12 months, respectively (progression-free survival-6 [PFS-6], overall survival-12 [OS-12]). RESULTS: Intranasal NEO100 was well tolerated at all dose levels and no severe adverse events were reported. PFS-6 was 33%, OS-12 was 55%, and median OS was 15 months. Four patients (33%), all of them with isocitrate dehydrogenase 1 (IDH1)-mutant tumors, survived >24 months. CONCLUSION: Intranasal glioma therapy with NEO100 was well tolerated. It correlated with improved survival when compared to historical controls, pointing to the possibility that this novel intranasal approach could become useful for the treatment of recurrent GBM.

20.
Neuro Oncol ; 23(1): 63-75, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32877532

RESUMO

BACKGROUND: Intracarotid injection of mannitol has been applied for decades to support brain entry of therapeutics that otherwise do not effectively cross the blood-brain barrier (BBB). However, the elaborate and high-risk nature of this procedure has kept its use restricted to well-equipped medical centers. We are developing a more straightforward approach to safely open the BBB, based on the intra-arterial (IA) injection of NEO100, a highly purified version of the natural monoterpene perillyl alcohol. METHODS: In vitro barrier permeability with NEO100 was evaluated by transepithelial/transendothelial electrical resistance and antibody diffusion assays. Its mechanism of action was studied by western blot, microarray analysis, and electron microscopy. In mouse models, we performed ultrasound-guided intracardiac administration of NEO100, followed by intravenous application of Evan's blue, methotrexate, checkpoint-inhibitory antibodies, or chimeric antigen receptor (CAR) T cells. RESULTS: NEO100 opened the BBB in a reversible and nontoxic fashion in vitro and in vivo. It enabled greatly increased brain entry of all tested therapeutics and was well tolerated by animals. Mechanistic studies revealed effects of NEO100 on different BBB transport pathways, along with translocation of tight junction proteins from the membrane to the cytoplasm in brain endothelial cells. CONCLUSION: We envision that this procedure can be translated to patients in the form of transfemoral arterial catheterization and cannulation to the cerebral arteries, which represents a low-risk procedure commonly used in a variety of clinical settings. Combined with NEO100, it is expected to provide a safe, widely available approach to enhance brain entry of any therapeutic.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Animais , Encéfalo , Humanos , Camundongos , Monoterpenos , Junções Íntimas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...