Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 55(Pt 3): 621-625, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35719306

RESUMO

Electronic or catalytic properties can be modified at the nanoscale level. Engineering efficient and specific nanomaterials requires the ability to study their complex structure-property relationships. Here, Bragg coherent diffraction imaging was used to measure the three-dimensional shape and strain of platinum nanoparticles with a diameter smaller than 30 nm, i.e. significantly smaller than any previous study. This was made possible by the realization of the Extremely Brilliant Source of ESRF, The European Synchrotron. This work demonstrates the feasibility of imaging the complex structure of very small particles in three dimensions and paves the way towards the observation of realistic catalytic particles.

2.
Nanotechnology ; 31(21): 214002, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32050166

RESUMO

We report on the direct correlation between the structural and optical properties of single, as-grown core-multi-shell GaAs/In0.15Ga0.85As/GaAs/AlAs/GaAs nanowires. Fabricated by molecular beam epitaxy on a pre-patterned Si(111) substrate, on a row of well separated nucleation sites, it was possible to access individual nanowires in the as-grown geometry. The polytype distribution along the growth axis of the nanowires was revealed by synchrotron-based nanoprobe x-ray diffraction techniques monitoring the axial 111 Bragg reflection. For the same nanowires, the spatially-resolved emission properties were obtained by cathodoluminescence hyperspectral linescans in a scanning electron microscope. Correlating both measurements, we reveal a blueshift of the shell quantum well emission energy combined with an increased emission intensity for segments exhibiting a mixed structure of alternating wurtzite and zincblende stacking compared with the pure crystal polytypes. The presence of this mixed structure was independently confirmed by cross-sectional transmission electron microscopy.

3.
Opt Express ; 27(1): 185-195, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30645366

RESUMO

We introduce a new design and development of a compound refractive X-ray zoom lens for energy scans in X-ray microscopy. Energy scans are, in principle, equivalent to radial scans in the reciprocal space for X-ray diffraction. Thanks to the absence of sample or detector motions, energy scans are better suited for microscopy, which requires high stability. In addition, close to the absorption edge of an element, energy scans can yield chemical information when coupled with resonant effects in full field diffraction X-ray microscopy (FFDXM) or X-ray absorption near edge structure (XANES) microscopy. Here, we demonstrate the concept by using a customized compound refractive X-ray zoom lens for 11 keV near the Ge Kα-edge. The working distance and magnification were kept constant during the energy scans by adapting the lens composition on switchable zoom lens fingers. This alleviates the need to reposition the lens while changing the energy and makes quantitative analysis more convenient for FFDXM. The fabricated zoom lens was characterized and proven suitable for the proposed measurement.

4.
Rev Sci Instrum ; 84(11): 113903, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24289407

RESUMO

X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.

5.
Nanotechnology ; 23(35): 355706, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22894894

RESUMO

We study the growth and relaxation processes of Ge nano-clusters selectively grown by chemical vapor deposition on free-standing 90 nm wide Si(001) nano-pillars with a thin Si(0.23)Ge(0.77) buffer layer. We found that the dome-shaped SiGe layer with a height of about 28 nm as well as the Ge dot deposited on top of it partially relaxes, mainly by elastic lattice bending. The Si nano-pillar shows a clear compliance behavior-an elastic response of the substrate on the growing film-with the tensile strained top part of the pillar. Additional annealing at 800 °C leads to the generation of misfit dislocation and reduces the compliance effect significantly. This example demonstrates that despite the compressive strain generated due to the surrounding SiO(2) growth mask it is possible to realize an overall tensile strain in the Si nano-pillar and following a compliant substrate effect by using a SiGe buffer layer. We further show that the SiGe buffer is able to improve the structural quality of the Ge nano-dot.

7.
Nanotechnology ; 23(11): 115704, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22369884

RESUMO

We study the growth and relaxation processes of Ge crystals selectively grown by chemical vapour deposition on free-standing 90 nm wide Si(001) nanopillars. Epi-Ge with thickness ranging from 4 to 80 nm was characterized by synchrotron based x-ray diffraction and transmission electron microscopy. We found that the strain in Ge nanostructures is plastically released by nucleation of misfit dislocations, leading to degrees of relaxation ranging from 50 to 100%. The growth of Ge nanocrystals follows the equilibrium crystal shape terminated by low surface energy (001) and {113} facets. Although the volumes of Ge nanocrystals are homogeneous, their shape is not uniform and the crystal quality is limited by volume defects on {111} planes. This is not the case for the Ge/Si nanostructures subjected to thermal treatment. Here, improved structure quality together with high levels of uniformity of the size and shape is observed.

8.
J Synchrotron Radiat ; 18(Pt 3): 413-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21525649

RESUMO

Three-dimensional reciprocal-space maps of a single SiGe island around the Si(004) Bragg peak are recorded using an energy-tuning technique with a microfocused X-ray beam with compound refractive lenses as focusing optics. The map is in agreement with simulated data as well as with a map recorded by an ordinary rocking-curve scan. The energy-tuning approach circumvents both the comparatively large sphere of confusion of diffractometers compared with nanostructures and vibrations induced by motors. Thus, this method offers new possibilities for novel combinations of three-dimensional micro- and nano-focused X-ray diffraction with complex in situ sample environments such as scanning probe microscopes.

9.
J Nanosci Nanotechnol ; 11(10): 9123-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22400312

RESUMO

The growth of Ge islands on a pit-patterned Si(001) template is investigated in situ, combining grazing incidence diffraction, multiple wavelength anomalous diffraction, and small angle scattering. This allows monitoring in situ the detailed structural and morphological evolutions of the pits, of the wetting-layer and of the nucleated islands on the pit-patterned Si(001) substrate. It is shown that after Si regrowth, the Si substrate displays {107} and {1 1 11} facets. During the very first stages of Ge growth, the preliminary facets of the Si substrate are energetically unfavourable, and the pit facets break up into a rather complex pattern of {10n} and {11m} facets with n > 7 and m > 11. At 5 and 6 ML, intensity rods from {105} and {113}-type facets appear in the GISAXS images revealing the formation of pyramids and domes, respectively. The degree of ordering, the shape, strain and composition of the islands are characterized during the growth process to provide a detailed evolution of their structure and morphology.

10.
Nature ; 464(7292): 1174-7, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20414305

RESUMO

The phenomenon of supercooling in metals-that is, the preservation of a disordered, fluid phase in a metastable state well below the melting point-has led to speculation that local atomic structure configurations of dense, symmetric, but non-periodic packing act as the main barrier for crystal nucleation. For liquids in contact with solids, crystalline surfaces induce layering of the adjacent atoms in the liquid and may prevent or lower supercooling. This seed effect is supposed to depend on the local lateral order adopted in the last atomic layers of the liquid in contact with the crystal. Although it has been suggested that there might be a direct coupling between surface-induced lateral order and supercooling, no experimental observation of such lateral ordering at interfaces is available. Here we report supercooling in gold-silicon (AuSi) eutectic droplets, enhanced by a Au-induced (6 x 6) reconstruction of the Si(111) substrate. In situ X-ray scattering and ab initio molecular dynamics reveal that pentagonal atomic arrangements of Au atoms at this interface favour a lateral-ordering stabilization process of the liquid phase. This interface-enhanced stabilization of the liquid state shows the importance of the solid-liquid interaction for the structure of the adjacent liquid layers. Such processes are important for present and future technologies, as fluidity and crystallization play a key part in soldering and casting, as well as in processing and controlling chemical reactions for microfluidic devices or during the vapour-liquid-solid growth of semiconductor nanowires.

11.
Phys Rev Lett ; 102(2): 025502, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19257289

RESUMO

We compare elastic relaxation and Si-Ge distribution in epitaxial islands grown on both pit-patterned and flat Si(001) substrates. Anomalous x-ray diffraction yields that nucleation in the pits provides a higher relaxation. Using an innovative, model-free fitting procedure based on self-consistent solutions of the elastic problem, we provide compositional and elastic-energy maps. Islands grown on flat substrates exhibit stronger composition gradients and do not show a monotonic decrease of elastic energy with height. Both phenomena are explained using both thermodynamic and kinetic arguments.

12.
Science ; 321(5896): 1654-8, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18801992

RESUMO

The microscopic insight into how and why catalytically active nanoparticles change their shape during oxidation and reduction reactions is a pivotal challenge in the fundamental understanding of heterogeneous catalysis. We report an oxygen-induced shape transformation of rhodium nanoparticles on magnesium oxide (001) substrates that is lifted upon carbon monoxide exposure at 600 kelvin. A Wulff analysis of high-resolution in situ x-ray diffraction, combined with transmission electron microscopy, shows that this phenomenon is driven by the formation of a oxygen-rhodium-oxygen surface oxide at the rhodium nanofacets. This experimental access into the behavior of such nanoparticles during a catalytic cycle is useful for the development of improved heterogeneous catalysts.

13.
Phys Rev Lett ; 94(15): 157201, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15904179

RESUMO

Multilayers of strained metamagnetic EuSe intercalated with nonmagnetic PbSe1-xTex were grown by molecular beam epitaxy under conditions optimized by electron diffraction. From detailed structural and magnetic characterization using anomalous synchrotron x-ray diffraction and magnetization measurements, the phase transition temperatures and the magnetic phase diagrams of strained EuSe as a function of the in-plane lattice constant are determined. In this way, it is demonstrated that the magnetic properties of the samples can be significantly changed by applying biaxial strain on EuSe in superlattice structures.

14.
Phys Rev Lett ; 90(6): 066105, 2003 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-12633307

RESUMO

Anomalous x-ray scattering is employed for quantitative measurements of the Ge composition profile in islands on Si(001). The anomalous effect in SiGe is enhanced exploiting the dependence of the complex atomic form factors on the momentum transfer. Comparing the intensity ratios for x-ray energies below and close to the K edge of Ge at various Bragg reflections in the grazing incidence diffraction setup, the sensitivity for the Ge profile is considerably enhanced. The method is demonstrated for SiGe dome-shaped islands grown on Si(001). It is found that the composition inside the island changes rather abruptly, whereas the lattice parameter relaxes continuously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...