Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Syst Biol (Stevenage) ; 152(4): 276-84, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16986271

RESUMO

This paper describes computational and experimental work on pattern formation in Drosophila egg development (oogenesis), an established experimental model for studying cell fate diversification in developing tissues. Epidermal growth factor receptor (EGFR) is a key regulator of pattern formation and morphogenesis in Drosophila oogenesis. EGFR signalling in oogenesis can be genetically manipulated and monitored at many levels, leading to large sets of heterogeneous data that enable the formulation of increasingly quantitative models of pattern formation in these systems.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Drosophila/fisiologia , Receptores ErbB/metabolismo , Modelos Biológicos , Oogênese/fisiologia , Animais , Transdução de Sinais/fisiologia , Biologia de Sistemas/métodos
2.
Dev Cell ; 1(4): 443-5, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11703933

RESUMO

Recent studies of border cell migration during Drosophila oogenesis demonstrate that the EGFR and PDGFR signaling pathways act in a partially redundant manner to guide this process. Evidence presented shows that PDGFR signaling directs border cell migration via Rac and the Rac activator Mbc/CED-5/Dock180.


Assuntos
Movimento Celular/fisiologia , Drosophila/embriologia , Oogênese/fisiologia , Transdução de Sinais/fisiologia , Animais , Feminino
3.
Development ; 127(24): 5541-50, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11076773

RESUMO

Drosophila embryonic dorsal-ventral polarity originates in the ovarian follicle through the restriction of pipe gene expression to a ventral subpopulation of follicle cells. Pipe, a homolog of vertebrate glycosaminoglycan-modifying enzymes, directs the ventral activation of an extracellular serine proteolytic cascade which defines the ventral side of the embryo. When pipe is expressed uniformly in the follicle cell layer, a strong ventralization of the resulting embryos is observed. Here, we show that this ventralization is dependent on the other members of the dorsal group of genes controlling dorsal-ventral polarity, but not on the state of the Epidermal Growth Factor Receptor signal transduction pathway which defines egg chamber polarity. Pipe protein expressed in vertebrate tissue culture cells localizes to the endoplasmic reticulum. Strikingly, coexpression of the dorsal group gene windbeutel in those cells directs Pipe to the Golgi. Similarly, Pipe protein exhibits an altered subcellular localization in the follicle cells of females mutant for windbeutel. Thus, Windbeutel protein enables the correct subcellular distribution of Pipe to facilitate its pattern-forming activity.


Assuntos
Proteínas de Drosophila , Drosophila/genética , Drosophila/metabolismo , Genes de Insetos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Animais , Padronização Corporal/genética , Células COS , Drosophila/enzimologia , Feminino , Complexo de Golgi/metabolismo , Microscopia Eletrônica , Mutação , Ovário/embriologia , Ovário/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Frações Subcelulares/metabolismo , Distribuição Tecidual , Transfecção
4.
Cell ; 103(1): 51-61, 2000 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-11051547

RESUMO

During Drosophila oogenesis, asymmetrically localized Gurken activates the EGF receptor (Egfr) and determines dorsal follicle cell fates. Using a mosaic follicle cell system we have identified a mutation in the D-cbl gene which causes hyperactivation of the Egfr pathway. Cbl proteins are known to downregulate activated receptors. We find that the abnormal Egfr activation is ligand dependent. Our results show that the precise regulation of Egfr activity necessary to establish different follicle cell fates requires two levels of control. The localized ligand Gurken activates Egfr to different levels in different follicle cells. In addition, Egfr activity has to be repressed through the activity of D-cbl to ensure the absence of signaling in the ventral most follicle cells.


Assuntos
Padronização Corporal/genética , Proteínas de Drosophila , Drosophila/embriologia , Receptores ErbB/genética , Oogênese/genética , Proteínas Tirosina Fosfatases , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/genética , Fator de Crescimento Transformador alfa , Alelos , Animais , Células Clonais/metabolismo , Análise Mutacional de DNA , Drosophila/genética , Desenvolvimento Embrionário e Fetal/genética , Receptores ErbB/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas de Insetos/genética , Proteínas de Membrana/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Folículo Ovariano/citologia , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Óvulo/crescimento & desenvolvimento , Gravidez , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-cbl , Sulfotransferases/genética , Fatores de Crescimento Transformadores/genética
5.
Development ; 127(22): 4753-62, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11044391

RESUMO

Mutations in the encore (enc) gene of Drosophila melanogaster cause one extra round of mitosis in the germline, resulting in the formation of egg chambers with extra nurse cells. In addition, enc mutations affect the accumulation of Gurken protein within the oocyte, leading to the production of ventralized eggs. Here we show that enc mutants also exhibit abnormalities in karyosome morphology, similar to other ventralizing mutants such as okra and spindle B. Unlike these mutants, however, the defects in Gurken accumulation and karyosome formation do not result from activation of a meiotic checkpoint. Furthermore, we demonstrate that the requirement for enc in these processes is temporally distinct from its role in germline mitosis. Cloning of the enc locus and generation of anti-Enc antibodies reveal that enc encodes a large novel protein that accumulates within the oocyte cytoplasm and colocalizes with grk mRNA. We argue that the enc mutant phenotypes reflect a role for Enc in the regulation of several RNA targets.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Proteínas do Ovo/genética , Proteínas do Ovo/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/fisiologia , Oogênese/fisiologia , Fator de Crescimento Transformador alfa , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Núcleo Celular/ultraestrutura , Sequência Conservada , Primers do DNA/genética , Drosophila melanogaster/genética , Feminino , Genes de Insetos , Meiose/genética , Meiose/fisiologia , Dados de Sequência Molecular , Mutação , Oogênese/genética , Biossíntese de Proteínas , Homologia de Sequência de Aminoácidos , Fatores de Crescimento Transformadores/genética
6.
Dev Biol ; 221(2): 435-46, 2000 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10790337

RESUMO

During Drosophila oogenesis, signaling between the germline and the soma leads to the establishment of polarity in the egg and embryo. This process involves the interaction of gurken (grk), a TGFalpha-like protein, with torpedo (top), the Drosophila EGF receptor (Egfr). In early stage egg chambers, grk RNA is present predominantly along the posterior cortex of the oocyte, and in mid stage egg chambers, the grk transcript becomes tightly localized to the future dorsal anterior corner of the oocyte. This localization of grk RNA restricts the distribution of Gurken protein and is critical in defining both the anterior-posterior and dorsal-ventral axes of the egg. We have determined the genomic sequence of the grk gene. By testing the requirement of various fragments of grk RNA in the localization process, we find localization signals present in both the 5' and 3' regions of the gene. Sequences in the 5' noncoding region allow for accumulation of the transcript within the oocyte in early stage egg chambers, while signals in the coding region and the 3'UTR are necessary for localization in mid to late stage egg chambers. Active translation is not required for localization of the grk RNA. The mechanism of gurken RNA localization, therefore, differs from that of other localized RNAs studied to date.


Assuntos
Proteínas de Drosophila , Drosophila/genética , Proteínas de Insetos/genética , Oócitos/fisiologia , Oogênese/genética , Transcrição Gênica , Fator de Crescimento Transformador alfa , Fatores de Crescimento Transformadores/genética , Regiões 3' não Traduzidas/genética , Animais , Polaridade Celular , Feminino , Hibridização In Situ , Oócitos/citologia , Proteínas Recombinantes de Fusão/biossíntese
7.
Mech Dev ; 89(1-2): 35-42, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10559478

RESUMO

During Drosophila oogenesis, localization of the transforming growth factor alpha (TGFalpha)-like signaling molecule Gurken to the oocyte membrane is required for polarity establishment of the egg and embryo. To test Gurken domain functions, full-length and truncated forms of Gurken were expressed ectopically using the UAS/Gal4 expression system, or in the germline using the endogenous promoter. GrkDeltaC, a deletion of the cytoplasmic domain, localizes to the oocyte membrane and can signal. GrkDeltaTC, which lacks the transmembrane and cytoplasmic domains, retains signaling ability when ectopically expressed in somatic cells. However, in the germline, the GrkDeltaTC protein accumulates throughout the oocyte cytoplasm and cannot signal. In addition, we found that several strong gurken alleles contain point mutations in the transmembrane region. We conclude that secretion of Gurken requires its transmembrane region, and propose a model in which the gene cornichon mediates this process.


Assuntos
Membrana Celular/metabolismo , Proteínas de Drosophila , Drosophila/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Oócitos/metabolismo , Fator de Crescimento Transformador alfa , Fatores de Crescimento Transformadores/genética , Fatores de Crescimento Transformadores/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Transporte Biológico , Receptores ErbB/metabolismo , Feminino , Dados de Sequência Molecular , Mutação
8.
Nat Cell Biol ; 1(6): 354-7, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10559962

RESUMO

The genes okra and spindle-B act during meiosis in Drosophila to repair double-stranded DNA breaks (DSBs) associated with meiotic recombination. Unexpectedly, mutations in these genes cause dorsoventral patterning defects during oogenesis. These defects result from a failure to accumulate Gurken protein, which is required to initiate dorsoventral patterning during oogenesis. Here we find that the block in Gurken accumulation in the oocyte cytoplasm reflects activation of a meiotic checkpoint in response to the persistence of DSBs in the nucleus. We also show that Vasa is a target of this meiotic checkpoint, and so may mediate the checkpoint-dependent translational regulation of Gurken.


Assuntos
Proteínas de Drosophila , Proteínas do Ovo/metabolismo , Proteínas de Insetos/genética , Meiose/fisiologia , Oogênese/fisiologia , Biossíntese de Proteínas , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador alfa , Fatores de Crescimento Transformadores/genética , Animais , RNA Helicases DEAD-box , Dano ao DNA , Reparo do DNA , Drosophila/fisiologia , Proteínas do Ovo/genética , RNA Helicases/metabolismo
9.
Cell ; 98(2): 171-80, 1999 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-10428029

RESUMO

Drosophila melanogaster pair-rule segmentation gene transcripts localize apically of nuclei in blastoderm embryos. This might occur by asymmetric (vectorial) export from one side of the nucleus or by transport within the cytoplasm. We have followed fluorescently labeled pair-rule transcripts postinjection into Drosophila embryos. Naked, microinjected fushi tarazu (ftz) transcripts do not localize in blastoderm embryos, indicating that cytoplasmic mechanisms alone are insufficient for apical targeting. However, prior exposure of ftz to Drosophila or human embryonic nuclear extract leads to rapid, specific, microtubule-dependent transport, arguing against vectorial export. We present evidence that ftz transcript localization involves the Squid (Hrp40) hnRNP protein and that the activity of hnRNP proteins in promoting transcript localization is evolutionarily conserved. We propose that cytoplasmic localization machineries recognize transcripts in the context of nuclear partner proteins.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/genética , Proteínas de Homeodomínio/genética , Hormônios de Inseto/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Blastoderma/metabolismo , Reagentes de Ligações Cruzadas , Citoplasma/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero/metabolismo , Evolução Molecular , Feminino , Fatores de Transcrição Fushi Tarazu , Regulação da Expressão Gênica no Desenvolvimento , Microinjeções , Microtúbulos/fisiologia , Proteínas Nucleares/farmacologia , Ovário/química , Ligação Proteica/fisiologia , RNA Mensageiro/farmacocinética , Transcrição Gênica/fisiologia , Raios Ultravioleta
10.
Genes Dev ; 13(7): 864-76, 1999 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-10197986

RESUMO

Heterogeneous nuclear RNA-binding proteins, hnRNPs, have been implicated in nuclear export of mRNAs in organisms from yeast to humans. A germ-line mutation in a Drosophila hnRNP, Squid (Sqd)/hrp40, causes female sterility as a result of mislocalization of gurken (grk) mRNA during oogenesis. Alternative splicing produces three isoforms, SqdA, SqdB, and SqdS. Here we show that these isoforms are not equivalent; SqdA and SqdS perform overlapping but nonidentical functions in grk mRNA localization and protein accumulation, whereas SqdB cannot perform these functions. Furthermore, although all three Sqd isoforms are expressed in the germline cells of the ovary, they display distinct intracellular distributions. Both SqdB and SqdS are detected in germ-line nuclei, whereas SqdA is predominantly cytoplasmic. We show that this differential nuclear accumulation is correlated with a differential association with the nuclear import protein Transportin. Finally, we provide evidence that grk mRNA localization and translation are coupled by an interaction between Sqd and the translational repressor protein Bruno. These results demonstrate the isoform-specific contributions of individual hnRNP proteins in the regulation of a specific mRNA. Moreover, these data suggest a novel role for hnRNPs in localization and translational regulation of mRNAs.


Assuntos
Proteínas de Drosophila , Drosophila/metabolismo , Proteínas de Insetos/metabolismo , Oogênese/fisiologia , Proteínas de Ligação a RNA/metabolismo , Fator de Crescimento Transformador alfa , Fatores de Crescimento Transformadores/metabolismo , Animais , Animais Geneticamente Modificados/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Drosophila/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Humanos , Imuno-Histoquímica , Carioferinas , Modelos Biológicos , Modelos Genéticos , Proteínas Nucleares/metabolismo , Ovário/citologia , Ovário/metabolismo , Óvulo/citologia , Óvulo/metabolismo , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Recombinantes de Fusão , Homologia de Sequência de Aminoácidos , Transgenes , Regiões não Traduzidas/metabolismo
11.
Trends Cell Biol ; 9(1): 1-4, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10087609

RESUMO

The Drosophila epidermal growth factor receptor (EGFR) is active in different tissues and is involved in diverse processes such as patterning of the embryonic ectoderm, growth and differentiation of imaginal discs and cell survival. During oogenesis, the EGFR is expressed in the somatic follicle cells that surround individual oocyte-nurse cell complexes. In response to germline signals, the follicle cells differentiate in a complex pattern, which in turn leads to the establishment of the egg axes. Two recent reports have shown that the strategies used to pattern posterior follicle cells are different from those used to pattern dorsal follicle cells. In posterior follicle cells, EGFR activity is translated into an on-off response, whereas, in dorsal follicle cells, patterning mechanisms are initiated and refined by feedback that modulates receptor activity over time.


Assuntos
Drosophila/fisiologia , Receptores ErbB/metabolismo , Oogênese/fisiologia , Transdução de Sinais , Animais , Padronização Corporal , Diferenciação Celular , Drosophila/embriologia , Drosophila/metabolismo
12.
Curr Top Dev Biol ; 44: 203-43, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-9891881

RESUMO

The spatial regulation of Egfr activity in the follicular epithelium of the ovary is achieved by the localization of its ligand, Gurken, within the germline. The final distribution of Gurken within the oocyte appears to be specified both by the localization of the gurken RNA and by regulation of Gurken protein accumulation, possibly at the level of translation. Localized activation of the Egfr distinguishes certain subpopulations of follicle cells, thereby generating asymmetry within the follicular epithelium. In early oogenesis, Egfr activation in posterior follicle cells defines the AP polarity of the egg chamber, and in midoogenesis restriction of Egfr activity to dorsal follicle cells determines DV polarity. A number of factors required downstream of the Egfr have been identified, but the mechanism by which the observed patterning of the follicular epithelium is achieved remains unclear. The dynamic expression patterns of some of these targets suggest that the initial Gurken-Egfr signal at the dorsal side of the follicular epithelium mediates an initial distinction between dorsal and ventral follicle cells and also initiates subsequent refinement processes that determine the final pattern of cell fates. In the dorsal follicle cells, this refinement appears to involve interactions between Egfr targets and may also involve feedback regulation of Egfr activity such that the profile of Egfr activity is modulated over time. In addition, the initial Gurken-Egfr signal negatively regulates the functional domain of another patterning process that governs the establishment of the DV axis of the developing embryo.


Assuntos
Drosophila/fisiologia , Receptores ErbB/metabolismo , Oogênese/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos
13.
Genes Dev ; 12(17): 2711-23, 1998 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-9732269

RESUMO

okra (okr), spindle-B (spnB), and spindle-D (spnD) are three members of a group of female sterile loci that produce defects in oocyte and egg morphology, including variable dorsal-ventral defects in the eggshell and embryo, anterior-posterior defects in the follicle cell epithelium and in the oocyte, and abnormalities in oocyte nuclear morphology. Many of these phenotypes reflect defects in grk-Egfr signaling processes, and can be accounted for by a failure to accumulate wild-type levels of Gurken and Fs(1)K10. We have cloned okr and spnB, and show that okr encodes the Drosophila homolog of the yeast DNA-repair protein Rad54, and spnB encodes a Rad51-like protein related to the meiosis-specific DMC1 gene. In functional tests of their role in DNA repair, we find that okr behaves like its yeast homolog in that it is required in both mitotic and meiotic cells. In contrast, spnB and spnD appear to be required only in meiosis. The fact that genes involved in meiotic DNA metabolism have specific effects on oocyte patterning implies that the progression of the meiotic cell cycle is coordinated with the regulation of certain developmental events during oogenesis.


Assuntos
Padronização Corporal/genética , Proteínas de Drosophila , Drosophila melanogaster/fisiologia , Proteínas do Ovo/genética , Genes de Insetos , Oogênese/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Proteínas do Ovo/química , Proteínas do Ovo/metabolismo , Feminino , Genótipo , Infertilidade Feminina/genética , Dados de Sequência Molecular , Não Disjunção Genética , Proteína Rad52 de Recombinação e Reparo de DNA , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Cromossomo X
14.
Int J Dev Biol ; 42(3): 249-55, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9654005

RESUMO

We surveyed a total of 228 random insertions of a P[GawB] element to determine the fraction of regulatory regions in the Drosophila genome that activate gene expression specifically in follicle cells versus producing more complex patterns of expression. We monitored the GAL4 expression encoded by this construct in the ovarian follicle cells by crossing the lines to a strain containing a lacZ reporter construct. Sixty four per cent of the insertions showed ovarian expression. To assess the specificity of this expression, 124 of the 228 lines were crossed to strains containing either an activated form of Armadillo, the Drosophila homolog of beta-catenin, or an activated form of Torpedo/Egfr, the Drosophila homolog of the Epidermal Growth Factor receptor, under the control of GAL4 target sites. The lethality and imaginal disc phenotypes observed in these crosses suggest that most random insertions cause GAL4 expression in a variety of tissues. Very few insertions appear to drive expression only in follicle cells. Although the activated form of Armadillo produced higher frequencies of lethality and disk phenotypes, expression in the follicle cell epithelium at later stages of oogenesis did not lead to a visible phenotype. This contrasts with the dorsalized phenotypes observed in the combination of the same GAL4 lines with the activated Torpedo construct.


Assuntos
Proteínas de Drosophila , Drosophila/genética , Células Epiteliais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Genes Reguladores , Proteínas de Saccharomyces cerevisiae , Transativadores , Animais , Proteínas do Domínio Armadillo , Caderinas/genética , Proteínas do Citoesqueleto/genética , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA , Drosophila/crescimento & desenvolvimento , Epitélio/crescimento & desenvolvimento , Receptores ErbB/genética , Feminino , Genoma , Proteínas de Insetos/genética , Oócitos/citologia , Oócitos/fisiologia , Fenótipo , Fatores de Transcrição/genética , Asas de Animais/crescimento & desenvolvimento , beta Catenina
15.
Cell ; 93(2): 253-62, 1998 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-9568717

RESUMO

Establishment of dorsoventral polarity within the Drosophila embryo requires extraembryonic positional information generated during oogenesis. The genes windbeutel, pipe, and nudel are required within the somatic follicle cells of the ovary for production of this spatial cue. Using a novel follicle cell marker system, we have directly evaluated the effect of mutant follicle cell clones on the embryonic dorsoventral pattern. We find no spatially localized requirement for nudel activity. In contrast, windbeutel and pipe are required only within a restricted ventral region of the follicular epithelium. This ventral region can determine lateral embryonic cell fates nonautonomously, indicating that spatial information originating ventrally is subsequently refined, perhaps via diffusion, to yield the gradient of positional information that determines the embryonic dorsoventral pattern.


Assuntos
Padronização Corporal/genética , Proteínas de Drosophila , Drosophila/embriologia , Proteínas de Insetos/fisiologia , Animais , Drosophila/genética , Proteínas do Ovo/análise , Proteínas do Ovo/genética , Epitélio/embriologia , Feminino , Genes de Insetos/fisiologia , Proteínas de Insetos/análise , Proteínas de Insetos/genética , Mutação , Ovário/embriologia , Fenótipo
16.
Genes Dev ; 12(1): 120-31, 1998 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-9420336

RESUMO

The formation of the dorsoventral axis of the Drosophila embryo depends on cell-cell interactions that take place in the female ovary and involve the activation of transmembrane receptors by secreted ligands. The gene windbeutel functions in the somatic follicle cells of the ovary and is required for the generation of a signal that will determine the ventral side of the embryo. This signal originates in the follicle cells during oogenesis, but its actions are only manifested after fertilization, when the egg has already been laid. We have performed a molecular analysis of windbeutel. We have found that windbeutel encodes a putative resident protein of the endoplasmic reticulum, and has homologs in rats and humans. The gene is expressed for a brief period of time in the follicle cells of the ovary, at around the time when the dorsoventral axis of the egg chamber is first established. We propose that Windbeutel is responsible for the folding and/or modification of a specific factor that is secreted from the follicle cells and participates in the activation of the ventralizing signal.


Assuntos
Padronização Corporal/genética , Proteínas de Drosophila , Drosophila/embriologia , Retículo Endoplasmático/metabolismo , Proteínas de Insetos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Padronização Corporal/fisiologia , Mapeamento Cromossômico , DNA Complementar , Drosophila/genética , Feminino , Humanos , Proteínas de Insetos/fisiologia , Dados de Sequência Molecular , Mutação , Oogênese , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Fenótipo , Dobramento de Proteína , Ratos , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
17.
Development ; 124(19): 3871-80, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9367443

RESUMO

The Drosophila gene torpedo/Egfr (top/Egfr) encodes a homolog of the vertebrate Epidermal Growth Factor receptor. This receptor is required several times during the life cycle of the fly for the transmisson of developmental cues. During oogenesis, Top/Egfr activation is required for the establishment of the dorsal/ventral axis of the egg and the embryo. To examine how ectopic Top/Egfr activation affects cell fate determination, we constructed an activated version of the protein. Expression of this activated form (lambda top) in the follicle cells of the ovary induces dorsal cell fates in both the follicular epithelium and the embryo. Different levels of expression resulted in different dorsal follicle cell fates. These dorsal cell fates were expanded in the anterior, but not the posterior, of the egg, even in cases where all the follicle cells covering the oocyte expressed lambda top. The expression of genes known to respond to top/Egfr activation, argos (aos), kekkon1 (kek 1) and rhomboid (rho), was also expanded in the presence of the lambda top construct. When lambda top was expressed in all the follicle cells covering the oocyte, kek 1 and argos expression was induced in follicle cells all along the anterior/posterior axis of the egg chamber. In contrast, rho RNA expression was only activated in the anterior of the egg chamber. These data indicate that the response to Top/Egfr signaling is regulated by an anterior/posterior prepattern in the follicle cells. Expression of lambda top in the entire follicular epithelium resulted in an embryo dorsalized along the entire anterior/posterior axis. Expression of lambda top in anterior or posterior subpopulations of follicle cells resulted in regionally autonomous dorsalization of the embryos. This result indicates that subpopulations of follicle cells along the anterior/posterior axis can respond to Top/Egfr activation independently of one another.


Assuntos
Proteínas de Drosophila , Drosophila/embriologia , Embrião não Mamífero/fisiologia , Receptores ErbB/biossíntese , Proteínas Quinases , Receptores de Peptídeos de Invertebrados/biossíntese , Animais , Padronização Corporal/genética , Polaridade Celular , Cruzamentos Genéticos , Dimerização , Drosophila/genética , Casca de Ovo/fisiologia , Olho/citologia , Olho/embriologia , Olho/ultraestrutura , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Microscopia Eletrônica de Varredura , Ovário/fisiologia , Óvulo/fisiologia , Vertebrados , Asas de Animais/citologia , Asas de Animais/embriologia , Asas de Animais/crescimento & desenvolvimento
18.
Development ; 124(23): 4801-10, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9428416

RESUMO

Establishment of anterior-posterior and dorsal-ventral polarity within the Drosophila egg chamber requires signaling between the germline and the somatic cells of the ovary. The gene gurken (grk) encodes a TGFalpha-like protein that is localized within the developing oocyte and is thought to locally activate torpedo/Egfr (top/Egfr), the Drosophila homolog of the EGF receptor, which is expressed throughout the follicular epithelium surrounding the oocyte. grk-Egfr signaling is required early in oogenesis for specification of posterior follicle cell fate and later in oogenesis for dorsal follicle cell fate determination, thus establishing the axes of the egg shell and embryo. Previous studies have shown that these patterning processes are highly sensitive to changes in the levels and localization of grk mRNA. Here we show that post-transcriptional regulation of Grk protein levels is required for correct pattern formation. encore (enc), a gene that functions in the regulation of germline mitosis and maintenance of oocyte identity, is also required for the accumulation of Grk protein during oogenesis. We present evidence that enc regulates Grk post-transcriptionally to ensure adequate levels of signaling for establishment of the anterior-posterior and dorsal-ventral axes.


Assuntos
Proteínas de Drosophila , Drosophila/genética , Proteínas de Insetos/genética , Processamento Pós-Transcricional do RNA , Fator de Crescimento Transformador alfa , Fatores de Crescimento Transformadores/genética , Animais , Padronização Corporal/genética , Temperatura Baixa , Drosophila/embriologia , Embrião não Mamífero , Receptores ErbB/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/metabolismo , Mutação , Oogênese/genética , Folículo Ovariano/fisiologia , Óvulo/fisiologia , Fatores de Crescimento Transformadores/metabolismo
19.
Mech Dev ; 59(2): 105-13, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8951789

RESUMO

The establishment of anterior-posterior and dorsal-ventral polarity of the Drosophila egg and embryo depends on the function of the genes gurken, cornichon and Egfr (Drosophila epidermal growth factor receptor homolog). These genes encode components of a signal transduction pathway that transmits information between the germline cells and the somatic follicle cells of the ovary. gurken encodes a transforming growth factor-alpha-like protein and is a putative germline ligand of the Egfr present on the follicle cells. In mid-oogenesis the gurken transcript becomes spatially localized to the future dorsal-anterior cortex of the oocyte. To analyze the distribution pattern of Gurken protein we prepared antibodies against Gurken. We describe here the distribution pattern of the Gurken protein in wild-type ovaries and in ovaries from a number of dorsal-ventral patterning mutants. By immunoblotting we detect one major form of the Gurken protein, which likely corresponds to the unprocessed protein.


Assuntos
Proteínas de Drosophila , Proteínas de Insetos/metabolismo , Oogênese , Fator de Crescimento Transformador alfa/química , Fatores de Crescimento Transformadores/metabolismo , Animais , Anticorpos , Drosophila , Feminino , Genes erbB-1/genética , Peso Molecular , Mutagênese , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA