Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(30): e2208461119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858432

RESUMO

Insects frequently harbor endosymbionts, which are bacteria housed within host tissues. These associations are stably maintained over evolutionary timescales through vertical transmission of endosymbionts from host mothers to their offspring. Some endosymbionts manipulate host reproduction to facilitate spread within natural populations. Consequently, such infections have major impacts on insect physiology and evolution. However, technical hurdles have limited our understanding of the molecular mechanisms underlying such insect-endosymbiont interactions. Here, we investigate the nutritional interactions between endosymbiotic partners using the tractable insect Drosophila melanogaster and its natural endosymbiont Spiroplasma poulsonii. Using a combination of functional assays, metabolomics, and proteomics, we show that the abundance and amino acid composition of a single Spiroplasma membrane lectin, Spiralin B (SpiB), dictates the amino acid requirements of the endosymbiont and determines its proliferation within host tissues. Ectopically increasing SpiB levels in host tissues disrupts localization of endosymbionts in the fly egg chambers and decreases vertical transmission. We find that SpiB is likely to be required by the endosymbiont to enter host oocytes, which may explain the massive investment of S. poulsonii in SpiB synthesis. SpiB both permits vertical transmission of the symbiont and limits its growth in nutrient-limiting conditions for the host; therefore, a single protein plays a pivotal role in ensuring durability of the interaction in a variable environment.


Assuntos
Proteínas da Membrana Bacteriana Externa , Drosophila melanogaster , Interações entre Hospedeiro e Microrganismos , Spiroplasma , Simbiose , Aminoácidos/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Spiroplasma/metabolismo
2.
PLoS One ; 16(4): e0250524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33914801

RESUMO

Insects are frequently infected with heritable bacterial endosymbionts. Endosymbionts have a dramatic impact on their host physiology and evolution. Their tissue distribution is variable with some species being housed intracellularly, some extracellularly and some having a mixed lifestyle. The impact of extracellular endosymbionts on the biofluids they colonize (e.g. insect hemolymph) is however difficult to appreciate because biofluid composition can depend on the contribution of numerous tissues. Here we investigate Drosophila hemolymph proteome changes in response to the infection with the endosymbiont Spiroplasma poulsonii. S. poulsonii inhabits the fly hemolymph and gets vertically transmitted over generations by hijacking the oogenesis in females. Using dual proteomics on infected hemolymph, we uncovered a weak, chronic activation of the Toll immune pathway by S. poulsonii that was previously undetected by transcriptomics-based approaches. Using Drosophila genetics, we also identified candidate proteins putatively involved in controlling S. poulsonii growth. Last, we also provide a deep proteome of S. poulsonii, which, in combination with previously published transcriptomics data, improves our understanding of the post-transcriptional regulations operating in this bacterium.


Assuntos
Drosophila melanogaster/genética , Proteoma/genética , Proteômica , Spiroplasma/genética , Animais , Proteínas de Bactérias/genética , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Feminino , Hemolinfa/microbiologia , Oogênese/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Spiroplasma/patogenicidade , Simbiose/genética , Simbiose/imunologia
3.
Appl Environ Microbiol ; 86(14)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32444468

RESUMO

Insects are frequently infected by bacterial symbionts that greatly affect their physiology and ecology. Most of these endosymbionts are, however, barely tractable outside their native host, rendering functional genetics studies difficult or impossible. Spiroplasma poulsonii is a facultative bacterial endosymbiont of Drosophila melanogaster that manipulates the reproduction of its host by killing its male progeny at the embryonic stage. S. poulsonii, although a very fastidious bacterium, is closely related to pathogenic Spiroplasma species that are cultivable and genetically modifiable. In this work, we present the transformation of S. poulsonii with a plasmid bearing a fluorescence cassette, leveraging techniques adapted from those used to modify the pathogenic species Spiroplasma citri We demonstrate the feasibility of S. poulsonii transformation and discuss approaches for mutant selection and fly colonization, which are persisting hurdles that must be overcome to allow functional bacterial genetics studies of this endosymbiont in vivoIMPORTANCE Dozens of bacterial endosymbiont species have been described and estimated to infect about half of all insect species. However, only a few them are tractable in vitro, which hampers our understanding of the bacterial determinants of the host-symbiont interaction. Developing a transformation method for S. poulsonii is a major step toward genomic engineering of this symbiont, which will foster basic research on endosymbiosis. This could also open the way to practical uses of endosymbiont engineering through paratransgenesis of vector or pest insects.


Assuntos
Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Spiroplasma/genética , Simbiose , Transformação Bacteriana , Animais , Feminino , Masculino , Reprodução
4.
Cell Microbiol ; 22(5): e13156, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31912942

RESUMO

Spiroplasma poulsonii is a vertically transmitted endosymbiont of Drosophila melanogaster that causes male-killing, that is the death of infected male embryos during embryogenesis. Here, we report a natural variant of S. poulsonii that is efficiently vertically transmitted yet does not selectively kill males, but kills rather a subset of all embryos regardless of their sex, a phenotype we call 'blind-killing'. We show that the natural plasmid of S. poulsonii has an altered structure: Spaid, the gene coding for the male-killing toxin, is deleted in the blind-killing strain, confirming its function as a male-killing factor. Then we further investigate several hypotheses that could explain the sex-independent toxicity of this new strain on host embryos. As the second non-male-killing variant isolated from a male-killing original population, this new strain raises questions on how male-killing is maintained or lost in fly populations. As a natural knock-out of Spaid, which is unachievable yet by genetic engineering approaches, this variant also represents a valuable tool for further investigations on the male-killing mechanism.


Assuntos
Drosophila/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/mortalidade , Spiroplasma/genética , Spiroplasma/metabolismo , Animais , Proteínas de Bactérias/genética , Drosophila/embriologia , Drosophila melanogaster , Feminino , Regulação Bacteriana da Expressão Gênica , Infecções por Bactérias Gram-Negativas/veterinária , Masculino , Fenótipo , Transcriptoma
5.
mBio ; 9(2)2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29559567

RESUMO

Endosymbiotic bacteria associated with eukaryotic hosts are omnipresent in nature, particularly in insects. Studying the bacterial side of host-symbiont interactions is, however, often limited by the unculturability and genetic intractability of the symbionts. Spiroplasma poulsonii is a maternally transmitted bacterial endosymbiont that is naturally associated with several Drosophila species. S. poulsonii strongly affects its host's physiology, for example by causing male killing or by protecting it against various parasites. Despite intense work on this model since the 1950s, attempts to cultivate endosymbiotic Spiroplasma in vitro have failed so far. Here, we developed a method to sustain the in vitro culture of S. poulsonii by optimizing a commercially accessible medium. We also provide a complete genome assembly, including the first sequence of a natural plasmid of an endosymbiotic Spiroplasma species. Last, by comparing the transcriptome of the in vitro culture to the transcriptome of bacteria extracted from the host, we identified genes putatively involved in host-symbiont interactions. This work provides new opportunities to study the physiology of endosymbiotic Spiroplasma and paves the way to dissect insect-endosymbiont interactions with two genetically tractable partners.IMPORTANCE The discovery of insect bacterial endosymbionts (maternally transmitted bacteria) has revolutionized the study of insects, suggesting novel strategies for their control. Most endosymbionts are strongly dependent on their host to survive, making them uncultivable in artificial systems and genetically intractable. Spiroplasma poulsonii is an endosymbiont of Drosophila that affects host metabolism, reproduction, and defense against parasites. By providing the first reliable culture medium that allows a long-lasting in vitro culture of Spiroplasma and by elucidating its complete genome, this work lays the foundation for the development of genetic engineering tools to dissect endosymbiosis with two partners amenable to molecular study. Furthermore, the optimization method that we describe can be used on other yet uncultivable symbionts, opening new technical opportunities in the field of host-microbes interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Drosophila/microbiologia , Spiroplasma/metabolismo , Spiroplasma/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Spiroplasma/genética , Simbiose/genética , Simbiose/fisiologia
6.
BMC Genomics ; 17: 717, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27604219

RESUMO

BACKGROUND: The transcriptional response to many widely used drugs and its modulation by genetic variability is poorly understood. Here we present an analysis of RNAseq profiles from heart tissue of 18 inbred mouse strains treated with the ß-blocker atenolol (ATE) and the ß-agonist isoproterenol (ISO). RESULTS: Differential expression analyses revealed a large set of genes responding to ISO (n = 1770 at FDR = 0.0001) and a comparatively small one responding to ATE (n = 23 at FDR = 0.0001). At a less stringent definition of differential expression, the transcriptional responses to these two antagonistic drugs are reciprocal for many genes, with an overall anti-correlation of r = -0.3. This trend is also observed at the level of most individual strains even though the power to detect differential expression is significantly reduced. The inversely expressed gene sets are enriched with genes annotated for heart-related functions. Modular analysis revealed gene sets that exhibit coherent transcription profiles across some strains and/or treatments. Correlations between these modules and a broad spectrum of cardiovascular traits are stronger than expected by chance. This provides evidence for the overall importance of transcriptional regulation for these organismal responses and explicits links between co-expressed genes and the traits they are associated with. Gene set enrichment analysis of differentially expressed groups of genes pointed to pathways related to heart development and functionality. CONCLUSIONS: Our study provides new insights into the transcriptional response of the heart to perturbations of the ß-adrenergic system, implicating several new genes that had not been associated to this system previously.


Assuntos
Atenolol/farmacologia , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Coração/efeitos dos fármacos , Isoproterenol/farmacologia , Análise de Sequência de RNA/métodos , Animais , Biologia Computacional/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Camundongos , Camundongos Endogâmicos , Software
7.
Nat Immunol ; 17(10): 1150-8, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27548432

RESUMO

The innate immune system needs to distinguish between harmful and innocuous stimuli to adapt its activation to the level of threat. How Drosophila mounts differential immune responses to dead and live Gram-negative bacteria using the single peptidoglycan receptor PGRP-LC is unknown. Here we describe rPGRP-LC, an alternative splice variant of PGRP-LC that selectively dampens immune response activation in response to dead bacteria. rPGRP-LC-deficient flies cannot resolve immune activation after Gram-negative infection and die prematurely. The alternative exon in the encoding gene, here called rPGRP-LC, encodes an adaptor module that targets rPGRP-LC to membrane microdomains and interacts with the negative regulator Pirk and the ubiquitin ligase DIAP2. We find that rPGRP-LC-mediated resolution of an efficient immune response requires degradation of activating and regulatory receptors via endosomal ESCRT sorting. We propose that rPGRP-LC selectively responds to peptidoglycans from dead bacteria to tailor the immune response to the level of threat.


Assuntos
Proteínas de Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Infecções por Bactérias Gram-Negativas/imunologia , Microdomínios da Membrana/metabolismo , Pectobacterium carotovorum/imunologia , Isoformas de RNA/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/metabolismo , Linhagem Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Éxons/genética , Técnicas de Inativação de Genes , Imunidade/genética , Imunomodulação , Proteínas Inibidoras de Apoptose/metabolismo , Ligação Proteica , Sinais Direcionadores de Proteínas/genética , Proteólise , Isoformas de RNA/genética , Relação Estrutura-Atividade
8.
mBio ; 7(4)2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27406568

RESUMO

UNLABELLED: Insects commonly harbor facultative bacterial endosymbionts, such as Wolbachia and Spiroplasma species, that are vertically transmitted from mothers to their offspring. These endosymbiontic bacteria increase their propagation by manipulating host reproduction or by protecting their hosts against natural enemies. While an increasing number of studies have reported endosymbiont-mediated protection, little is known about the mechanisms underlying this protection. Here, we analyze the mechanisms underlying protection from parasitoid wasps in Drosophila melanogaster mediated by its facultative endosymbiont Spiroplasma poulsonii Our results indicate that S. poulsonii exerts protection against two distantly related wasp species, Leptopilina boulardi and Asobara tabida S. poulsonii-mediated protection against parasitoid wasps takes place at the pupal stage and is not associated with an increased cellular immune response. In this work, we provide three important observations that support the notion that S. poulsonii bacteria and wasp larvae compete for host lipids and that this competition underlies symbiont-mediated protection. First, lipid quantification shows that both S. poulsonii and parasitoid wasps deplete D. melanogaster hemolymph lipids. Second, the depletion of hemolymphatic lipids using the Lpp RNA interference (Lpp RNAi) construct reduces wasp success in larvae that are not infected with S. poulsonii and blocks S. poulsonii growth. Third, we show that the growth of S. poulsonii bacteria is not affected by the presence of the wasps, indicating that when S. poulsonii is present, larval wasps will develop in a lipid-depleted environment. We propose that competition for host lipids may be relevant to endosymbiont-mediated protection in other systems and could explain the broad spectrum of protection provided. IMPORTANCE: Virtually all insects, including crop pests and disease vectors, harbor facultative bacterial endosymbionts. They are vertically transmitted from mothers to their offspring, and some protect their host against pathogens. Here, we studied the mechanism of protection against parasitoid wasps mediated by the Drosophila melanogaster endosymbiont Spiroplasma poulsonii Using genetic manipulation of the host, we provide strong evidence supporting the hypothesis that competition for host lipids underlies S. poulsonii-mediated protection against parasitoid wasps. We propose that lipid competition-based protection may not be restricted to Spiroplasma bacteria but could also apply other endosymbionts, notably Wolbachia bacteria, which can suppress human disease-causing viruses in insect hosts.


Assuntos
Drosophila melanogaster/microbiologia , Drosophila melanogaster/parasitologia , Himenópteros/crescimento & desenvolvimento , Himenópteros/metabolismo , Metabolismo dos Lipídeos , Spiroplasma/crescimento & desenvolvimento , Spiroplasma/metabolismo , Animais , Drosophila melanogaster/metabolismo , Hemolinfa/química , Interações Hospedeiro-Parasita , Lipídeos/análise , Simbiose
9.
mBio ; 6(2)2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25827421

RESUMO

UNLABELLED: Spiroplasmas are helical and motile members of a cell wall-less eubacterial group called Mollicutes. Although all spiroplasmas are associated with arthropods, they exhibit great diversity with respect to both their modes of transmission and their effects on their hosts; ranging from horizontally transmitted pathogens and commensals to endosymbionts that are transmitted transovarially (i.e., from mother to offspring). Here we provide the first genome sequence, along with proteomic validation, of an endosymbiotic inherited Spiroplasma bacterium, the Spiroplasma poulsonii MSRO strain harbored by Drosophila melanogaster. Comparison of the genome content of S. poulsonii with that of horizontally transmitted spiroplasmas indicates that S. poulsonii has lost many metabolic pathways and transporters, demonstrating a high level of interdependence with its insect host. Consistent with genome analysis, experimental studies showed that S. poulsonii metabolizes glucose but not trehalose. Notably, trehalose is more abundant than glucose in Drosophila hemolymph, and the inability to metabolize trehalose may prevent S. poulsonii from overproliferating. Our study identifies putative virulence genes, notably, those for a chitinase, the H2O2-producing glycerol-3-phosphate oxidase, and enzymes involved in the synthesis of the eukaryote-toxic lipid cardiolipin. S. poulsonii also expresses on the cell membrane one functional adhesion-related protein and two divergent spiralin proteins that have been implicated in insect cell invasion in other spiroplasmas. These lipoproteins may be involved in the colonization of the Drosophila germ line, ensuring S. poulsonii vertical transmission. The S. poulsonii genome is a valuable resource to explore the mechanisms of male killing and symbiont-mediated protection, two cardinal features of many facultative endosymbionts. IMPORTANCE: Most insect species, including important disease vectors and crop pests, harbor vertically transmitted endosymbiotic bacteria. These endosymbionts play key roles in their hosts' fitness, including protecting them against natural enemies and manipulating their reproduction in ways that increase the frequency of symbiont infection. Little is known about the molecular mechanisms that underlie these processes. Here, we provide the first genome draft of a vertically transmitted male-killing Spiroplasma bacterium, the S. poulsonii MSRO strain harbored by D. melanogaster. Analysis of the S. poulsonii genome was complemented by proteomics and ex vivo metabolic experiments. Our results indicate that S. poulsonii has reduced metabolic capabilities and expresses divergent membrane lipoproteins and potential virulence factors that likely participate in Spiroplasma-host interactions. This work fills a gap in our knowledge of insect endosymbionts and provides tools with which to decipher the interaction between Spiroplasma bacteria and their well-characterized host D. melanogaster, which is emerging as a model of endosymbiosis.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Drosophila melanogaster/microbiologia , Genoma Bacteriano , Análise de Sequência de DNA , Spiroplasma/genética , Animais , Dados de Sequência Molecular , Spiroplasma/isolamento & purificação , Spiroplasma/fisiologia , Simbiose
10.
Cell Rep ; 9(1): 336-348, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25284780

RESUMO

Organisms need to assess their nutritional state and adapt their digestive capacity to the demands for various nutrients. Modulation of digestive enzyme production represents a rational step to regulate nutriment uptake. However, the role of digestion in nutrient homeostasis has been largely neglected. In this study, we analyzed the mechanism underlying glucose repression of digestive enzymes in the adult Drosophila midgut. We demonstrate that glucose represses the expression of many carbohydrases and lipases. Our data reveal that the consumption of nutritious sugars stimulates the secretion of the transforming growth factor ß (TGF-ß) ligand, Dawdle, from the fat body. Dawdle then acts via circulation to activate TGF-ß/Activin signaling in the midgut, culminating in the repression of digestive enzymes that are highly expressed during starvation. Thus, our study not only identifies a mechanism that couples sugar sensing with digestive enzyme expression but points to an important role of TGF-ß/Activin signaling in sugar metabolism.


Assuntos
Ativinas/metabolismo , Glicosídeo Hidrolases/biossíntese , Lipase Lipoproteica/biossíntese , Fator de Crescimento Transformador beta/metabolismo , Animais , Drosophila , Glucose/metabolismo , Glicosídeo Hidrolases/metabolismo , Lipase Lipoproteica/metabolismo , Transdução de Sinais
11.
Elife ; 3: e02964, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25027439

RESUMO

Spiroplasma poulsonii is a maternally transmitted bacterial endosymbiont that is naturally associated with Drosophila melanogaster. S. poulsonii resides extracellularly in the hemolymph, where it must acquire metabolites to sustain proliferation. In this study, we find that Spiroplasma proliferation specifically depletes host hemolymph diacylglyceride, the major lipid class transported by the lipoprotein, Lpp. RNAi-mediated knockdown of Lpp expression, which reduces the amount of circulating lipids, inhibits Spiroplasma proliferation demonstrating that bacterial proliferation requires hemolymph-lipids. Altogether, our study shows that an insect endosymbiont acquires specific lipidic metabolites from the transport lipoproteins in the hemolymph of its host. In addition, we show that the proliferation of this endosymbiont is limited by the availability of hemolymph lipids. This feature could limit endosymbiont over-proliferation under conditions of host nutrient limitation as lipid availability is strongly influenced by the nutritional state.


Assuntos
Diglicerídeos/metabolismo , Drosophila melanogaster/microbiologia , Hemolinfa/microbiologia , Spiroplasma/metabolismo , Animais , Carga Bacteriana , Transporte Biológico , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Feminino , Fertilidade/fisiologia , Expressão Gênica , Hemolinfa/química , Hemolinfa/metabolismo , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lipoproteínas/antagonistas & inibidores , Lipoproteínas/genética , Lipoproteínas/metabolismo , Longevidade/fisiologia , Masculino , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Spiroplasma/crescimento & desenvolvimento , Simbiose/fisiologia
12.
Glia ; 61(7): 1041-51, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23553667

RESUMO

Mutations in SH3TC2 trigger autosomal recessive demyelinating Charcot-Marie-Tooth type 4C (CMT4C) neuropathy. Sh3tc2 is specifically expressed in Schwann cells and is necessary for proper myelination of peripheral axons. In line with the early onset of neuropathy observed in patients with CMT4C, our analyses of the murine model of CMT4C revealed that the myelinating properties of Sh3tc2-deficient Schwann cells are affected at an early stage. This early phenotype is associated with changes in the canonical Nrg1/ErbB pathway involved in control of myelination. We demonstrated that Sh3tc2 interacts with ErbB2 and plays a role in the regulation of ErbB2 intracellular trafficking from the plasma membrane upon Nrg1 activation. Interestingly, both the loss of Sh3tc2 function in mice and the pathological mutations present in CMT4C patients affect ErbB2 internalization, potentially altering its downstream intracellular signaling pathways. Altogether, our results indicate that the molecular mechanism for the axonal size sensing is disturbed in Sh3tc2-deficient myelinating Schwann cells, thus providing a novel insight into the pathophysiology of CMT4C neuropathy.


Assuntos
Proteínas de Transporte/metabolismo , Neuregulina-1/metabolismo , Receptor ErbB-2/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Transporte/genética , Células Cultivadas , Regulação da Expressão Gênica/genética , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Neuregulina-1/genética , Receptor ErbB-2/genética , Células de Schwann/metabolismo , Nervo Isquiático/citologia , Nervo Isquiático/metabolismo , Frações Subcelulares/metabolismo
13.
mBio ; 4(2)2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23462112

RESUMO

UNLABELLED: Spiroplasma is a diverse bacterial clade that includes many vertically transmitted insect endosymbionts, including Spiroplasma poulsonii, a natural endosymbiont of Drosophila melanogaster. These bacteria persist in the hemolymph of their adult host and exhibit efficient vertical transmission from mother to offspring. In this study, we analyzed the mechanism that underlies their vertical transmission, and here we provide strong evidence that these bacteria use the yolk uptake machinery to colonize the germ line. We show that Spiroplasma reaches the oocyte by passing through the intercellular space surrounding the ovarian follicle cells and is then endocytosed into oocytes within yolk granules during the vitellogenic stages of oogenesis. Mutations that disrupt yolk uptake by oocytes inhibit vertical Spiroplasma transmission and lead to an accumulation of these bacteria outside the oocyte. Impairment of yolk secretion by the fat body results in Spiroplasma not reaching the oocyte and a severe reduction of vertical transmission. We propose a model in which Spiroplasma first interacts with yolk in the hemolymph to gain access to the oocyte and then uses the yolk receptor, Yolkless, to be endocytosed into the oocyte. Cooption of the yolk uptake machinery is a powerful strategy for endosymbionts to target the germ line and achieve vertical transmission. This mechanism may apply to other endosymbionts and provides a possible explanation for endosymbiont host specificity. IMPORTANCE: Most insect species, including important disease vectors and crop pests, harbor vertically transmitted endosymbiotic bacteria. Studies have shown that many facultative endosymbionts, including Spiroplasma, confer protection against different classes of parasites on their hosts and therefore are attractive tools for the control of vector-borne diseases. The ability to be efficiently transmitted from females to their offspring is the key feature shaping associations between insects and their inherited endosymbionts, but to date, little is known about the mechanisms involved. In oviparous animals, yolk accumulates in developing eggs and serves to meet the nutritional demands of embryonic development. Here we show that Spiroplasma coopts the yolk transport and uptake machinery to colonize the germ line and ensure efficient vertical transmission. The uptake of yolk is a female germ line-specific feature and therefore an attractive target for cooption by endosymbionts that need to maintain high-fidelity maternal transmission.


Assuntos
Drosophila melanogaster/microbiologia , Spiroplasma/fisiologia , Simbiose , Animais , Proteínas do Ovo/metabolismo , Endocitose , Corpo Adiposo/metabolismo , Feminino , Hemolinfa/microbiologia , Modelos Biológicos , Oócitos/microbiologia , Oócitos/fisiologia
14.
Ecol Lett ; 15(12): 1439-48, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23006492

RESUMO

The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.


Assuntos
Biodiversidade , Variação Genética , Plantas/genética , Ecossistema , Geografia
15.
PLoS One ; 7(7): e41032, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22859963

RESUMO

ß-blockers and ß-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective ß(1)-blocker, Atenolol (ate), and a ß-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the ß-adrenergic system, and one locus for the responsiveness of QTc (p<10(-8)). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10(-6)). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to ß-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Atenolol/farmacologia , Mapeamento Cromossômico , Isoproterenol/farmacologia , Polimorfismo de Nucleotídeo Único , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Feminino , Loci Gênicos , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/genética , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Tamanho do Órgão/genética , Transcriptoma
16.
Brain ; 133(Pt 8): 2462-74, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20826437

RESUMO

Patients with Charcot-Marie-Tooth neuropathy and gene targeting in mice revealed an essential role for the SH3TC2 gene in peripheral nerve myelination. SH3TC2 expression is restricted to Schwann cells in the peripheral nervous system, and the gene product, SH3TC2, localizes to the perinuclear recycling compartment. Here, we show that SH3TC2 interacts with the small guanosine triphosphatase Rab11, which is known to regulate the recycling of internalized membranes and receptors back to the cell surface. Results of protein binding studies and transferrin receptor trafficking are in line with a role of SH3TC2 as a Rab11 effector molecule. Consistent with a function of Rab11 in Schwann cell myelination, SH3TC2 mutations that cause neuropathy disrupt the SH3TC2/Rab11 interaction, and forced expression of dominant negative Rab11 strongly impairs myelin formation in vitro. Our data indicate that the SH3TC2/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.


Assuntos
Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Bainha de Mielina/metabolismo , Nervos Periféricos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células COS , Proteínas de Transporte/genética , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Chlorocebus aethiops , Gânglios Espinais/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Mutação , Ratos , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo , Proteínas rab de Ligação ao GTP/genética
17.
PLoS One ; 4(8): e6610, 2009 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-19672458

RESUMO

We report the characterisation of 27 cardiovascular-related traits in 23 inbred mouse strains. Mice were phenotyped either in response to chronic administration of a single dose of the beta-adrenergic receptor blocker atenolol or under a low and a high dose of the beta-agonist isoproterenol and compared to baseline condition. The robustness of our data is supported by high trait heritabilities (typically H(2)>0.7) and significant correlations of trait values measured in baseline condition with independent multistrain datasets of the Mouse Phenome Database. We then focused on the drug-, dose-, and strain-specific responses to beta-stimulation and beta-blockade of a selection of traits including heart rate, systolic blood pressure, cardiac weight indices, ECG parameters and body weight. Because of the wealth of data accumulated, we applied integrative analyses such as comprehensive bi-clustering to investigate the structure of the response across the different phenotypes, strains and experimental conditions. Information extracted from these analyses is discussed in terms of novelty and biological implications. For example, we observe that traits related to ventricular weight in most strains respond only to the high dose of isoproterenol, while heart rate and atrial weight are already affected by the low dose. Finally, we observe little concordance between strain similarity based on the phenotypes and genotypic relatedness computed from genomic SNP profiles. This indicates that cardiovascular phenotypes are unlikely to segregate according to global phylogeny, but rather be governed by smaller, local differences in the genetic architecture of the various strains.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Atenolol/farmacologia , Fenômenos Fisiológicos Cardiovasculares , Isoproterenol/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Eletrocardiografia , Frequência Cardíaca/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos , Tamanho do Órgão/efeitos dos fármacos , Fenótipo
18.
Ecol Lett ; 12(7): 632-40, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19392716

RESUMO

Climatic history and ecology are considered the most important factors moulding the spatial pattern of genetic diversity. With the advent of molecular markers, species' historical fates have been widely explored. However, it has remained speculative what role ecological factors have played in shaping spatial genetic structures within species. With an unprecedented, dense large-scale sampling and genome-screening, we tested how ecological factors have influenced the spatial genetic structures in Alpine plants. Here, we show that species growing on similar substrate types, largely determined by the nature of bedrock, displayed highly congruent spatial genetic structures. As the heterogeneous and disjunctive distribution of bedrock types in the Alps, decisive for refugial survival during the ice ages, is temporally stable, concerted post-glacial migration routes emerged. Our multispecies study demonstrates the relevance of particular ecological factors in shaping genetic patterns, which should be considered when modelling species projective distributions under climate change scenarios.


Assuntos
Biodiversidade , Clima , Plantas/genética , Solo , Impressões Digitais de DNA , Geografia , Filogenia , Desenvolvimento Vegetal , Plantas/classificação , Especificidade da Espécie , Fatores de Tempo
19.
Plant Syst Evol ; 280(1-2): 15-28, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21698064

RESUMO

Malagasy Dracaena (Ruscaceae) are divided into four species and 14 varieties, all of them showing a high level of morphological diversity and a putatively artefactual circumscription. In order to reveal relationships between those entangled entities, a span of Malagasy Dracaena were sampled and analyzed using cpDNA sequences and AFLP. The cpDNA analyses resolved three biogeographic clades that are mostly inconsistent with morphology, since similar phenotypes are found across the three clades. Bayesian inference clustering analyses based on the AFLP were not in accordance with the cpDNA analysis. This result might be explained by (1) a recent origin of the Malagasy species of Dracaena with an incomplete sorting of chloroplast lineages; (2) a high amount of hybridizations; (3) a complex migration pattern. Interestingly, when the AFLP are analyzed using the parsimony criterion, a trend towards a directional evolution of inflorescence types and ecological features was observed. This might be considered either as phenotypic plasticity and/or as the result of fast evolution in flower characters according to habitat preferences. Overall, our results point to the difficulty of defining evolutionarily significant units in Malagasy Dracaena, emphasizing the complex speciation processes taking place in tropical regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...