Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202300983, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872489

RESUMO

The growing interest in tin-halide semiconductors for photovoltaic applications demands an in-depth knowledge of the fundamental properties of their constituents, starting from the smallest monomers entering the initial stages of formation. In this first-principles work based on time-dependent density-functional theory, we investigate the structural, electronic, and optical properties of tin-halide molecules SnXn2-n, with n=1,2,3,4 and X = Cl, Br, I, simulating these compounds in vacuo as well as in an implicit solvent. We find that structural properties are very sensitive to the halogen species while the charge distribution is also affected by stoichiometry. The ionicity of the Sn-X bond is confirmed by the Bader charge analysis albeit charge displacement plots point to more complex metal-halide coordination. Particular focus is posed on the neutral molecules SnX2, for which electronic and optical properties are discussed in detail. Band gaps and absorption onset decrease with increasing size of the halogen species, and despite general common features, each molecule displays peculiar optical signatures. Our results are elaborated in the context of experimental and theoretical literature, including the more widely studied lead-halide analogs, aiming to contribute with microscopic insight to a better understanding of tin-halide perovskites.

3.
J Phys Chem A ; 127(20): 4463-4472, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37171108

RESUMO

The emerging interest in tin halide perovskites demands a robust understanding of the fundamental properties of these materials starting from the earliest steps of their synthesis. In a first-principles work based on time dependent density functional theory, we investigate the structural, energetic, electronic, and optical properties of 14 tin iodide solution complexes formed by the SnI2 unit tetracoordinated with molecules of common solvents, which we classify according to their Gutmann's donor number. We find that all considered complexes are energetically stable and their formation energy expectedly increases with the donating ability of the solvent. The energies of the frontier states are affected by the choice of solvent, with their absolute values decreasing with the donor number. The occupied orbitals are predominantly localized on the tin iodide unit, while the unoccupied ones are distributed also on the solvent molecules. Owing to this partial wave function overlap, the first optical excitation is generally weak, although the spectral weight is red-shifted by the solvent molecules being coordinated to SnI2 in comparison to the reference obtained for this molecule alone. Comparisons with results obtained on the same level of theory on Pb-based counterparts corroborate our analysis. The outcomes of this study provide quantum-mechanical insight into the fundamental properties of tin iodide solution complexes. This knowledge is valuable in the research on lead-free halide perovskites and their precursors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...