Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 4(5): eaap8563, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29806019

RESUMO

Males pursuing alternative reproductive tactics have been predicted to face a trade-off between maximizing either swimming performance or endurance of their sperm. However, empirical evidence for this trade-off is equivocal, which may be due to simplistic assumptions. In the shell-brooding cichlid fish Lamprologus callipterus, two Mendelian male morphs compete for fertilization by divergent means: Bourgeois nest males ejaculate sperm, on average, about six times farther from the unfertilized ova than do parasitic dwarf males. This asymmetry is opposite to the usual situation, in which bourgeois males typically benefit from superior fertilization opportunities, suggesting that nest males' sperm should persist longer than dwarf male sperm. The assumed trade-off between sperm swimming performance and longevity predicts that, in turn, sperm of dwarf males should outperform that of nest males in swimming efficiency. Measurement of sperm performance and endurance reveals that dwarf male spermatozoa swim straighter initially than those of nest males, but their motility declines earlier and their velocity slows down more abruptly. Nest male sperm survives longer, which relates to a larger sperm head plus midpiece, implying more mitochondria. Thus, the trade-off between sperm performance and endurance is optimized in opposite directions by alternative male morphs. We argue that the relative success of alternative sperm performance strategies can be influenced strongly by environmental factors such as the time window between gamete release and fertilization, and the position of gamete release. This is an important yet little understood aspect of gametic adaptations to sperm competition.


Assuntos
Ciclídeos , Comportamento Sexual Animal , Espermatozoides/fisiologia , Animais , Sobrevivência Celular , Masculino , Reprodução , Análise do Sêmen , Motilidade dos Espermatozoides
2.
Ecol Evol ; 3(6): 1614-25, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23789072

RESUMO

In species with indeterminate growth, age-related size variation of reproductive competitors within each sex is often high. This selects for divergence in reproductive tactics of same-sex competitors, particularly in males. Where alternative tactics are fixed for life, the causality of tactic choice is often unclear. In the African cichlid Lamprologus callipterus, large nest males collect and present empty snail shells to females that use these shells for egg deposition and brood care. Small dwarf males attempt to fertilize eggs by entering shells in which females are spawning. The bourgeois nest males exceed parasitic dwarf males in size by nearly two orders of magnitude, which is likely to result from greatly diverging growth patterns. Here, we ask whether growth patterns are heritable in this species, or whether and to which extent they are determined by environmental factors. Standardized breeding experiments using unrelated offspring and maternal half-sibs revealed highly divergent growth patterns of male young sired by nest or dwarf males, whereas the growth of female offspring of both male types did not differ. As expected, food had a significant modifying effect on growth, but neither the quantity of breeding substrate in the environment nor ambient temperature affected growth. None of the environmental factors tested influenced the choice of male life histories. We conclude that in L. callipterus growth rates of bourgeois and parasitic males are paternally inherited, and that male and female growth is phenotypically plastic to only a small degree.

3.
Int J Evol Biol ; 2012: 517849, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22928149

RESUMO

Aim. External fertilisation requires synchronisation of gamete release between the two sexes. Adequate synchronisation is essential in aquatic media because sperm is very short-lived in water. In the cichlid Lamprologus callipterus, fertilisation of the eggs takes place inside an empty snail shell, where females stay inside the shell and males have to ejaculate into the shell opening. This spawning pattern makes the coordination of gamete release difficult. Methods. This study examined the synchronisation of males and females during egg laying. Results. The results showed that the male initiates each spawning sequence and that sperm release and egg laying are very well synchronised. 68% of all sperm releases occurred at exactly the same time when the female laid an egg, and 99% of ejaculations occurred within ±5 seconds from egg deposition. On average 95 eggs are laid one by one with intervals of several minutes between subsequent eggs, leading to a total spawning duration in excess of six hours. Conclusions. We discuss this exceptional spawning pattern and how it might reflect a conflict between the sexes, with males attempting to induce egg laying and females extending the egg laying period to raise the chance for parasitic males to participate in spawning.

4.
J Exp Zool A Ecol Genet Physiol ; 307(10): 549-55, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17674350

RESUMO

The water spider Argyroneta aquatica (Clerck) is the only spider that spends its whole life under water. Water spiders keep an air bubble around their body for breathing and build under-water air bells, which they use for shelter and raising offspring, digesting and consuming prey, moulting, depositing eggs and sperm, and copulating. It is unclear whether these bells are an important oxygen reservoir for breathing under water, or whether they serve mainly to create water-free space for feeding and reproduction. In this study, we manipulated the composition of the gas inside the bell of female water spiders to test whether they monitor the quality of this gas, and replenish oxygen if required. We exchanged the entire gas in the bell either with pure O2, pure CO2, or with ambient air as control, and monitored behavioural responses. The test spiders surfaced and replenished air more often in the CO2 treatment than in the O2 treatment, and they increased bell building behaviour. In addition to active oxygen regulation, they monitored and adjusted the bells by adding silk. These results show that water spiders use the air bell as an oxygen reservoir, and that it functions as an external lung, which renders it essential for living under water permanently. A. aquatica is the only animal that collects, transports, and stores air, and monitors its property for breathing, which is an adaptive response of a terrestrial animal to the colonization of an aquatic habitat.


Assuntos
Adaptação Fisiológica/fisiologia , Comportamento Animal/fisiologia , Meio Ambiente , Troca Gasosa Pulmonar/fisiologia , Aranhas/fisiologia , Animais , Tamanho Corporal/fisiologia , Dióxido de Carbono/metabolismo , Feminino , Atividade Motora/fisiologia , Oxigênio/metabolismo , Fenótipo , Gravação de Videoteipe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA