Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Obesity (Silver Spring) ; 31(10): 2493-2504, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37670579

RESUMO

OBJECTIVE: Insulin resistance is characterized by ectopic fat accumulation leading to cardiac diastolic dysfunction and nonalcoholic fatty liver disease. The objective of this study was to determine whether treatment with the peroxisome proliferator-activated receptor-α (PPARα) agonist ciprofibrate has direct effects on cardiac and hepatic metabolism and can improve insulin sensitivity and cardiac function in insulin-resistant volunteers. METHODS: Ten insulin-resistant male volunteers received 100 mg/d of ciprofibrate and placebo for 5 weeks in a randomized double-blind crossover study. Insulin-stimulated metabolic rate of glucose (MRgluc) was measured using dynamic 18 F-fluorodeoxyglucose-positron emission tomography (18 F-FDG-PET). Additionally, cardiac function, whole-body insulin sensitivity, intrahepatic lipid content, skeletal muscle gene expression, 24-hour blood pressure, and substrate metabolism were measured. RESULTS: Whole-body insulin sensitivity, energy metabolism, and body composition were unchanged after ciprofibrate treatment. Ciprofibrate treatment decreased insulin-stimulated hepatic MRgluc and increased hepatic lipid content. Myocardial net MRgluc tended to decrease after ciprofibrate treatment, but ciprofibrate treatment had no effect on cardiac function and cardiac energy status. In addition, no changes in PPAR-related gene expression in muscle were found. CONCLUSIONS: Ciprofibrate treatment increased hepatic lipid accumulation and lowered MRgluc, without affecting whole-body insulin sensitivity. Furthermore, parameters of cardiac function or cardiac energy status were not altered upon ciprofibrate treatment.


Assuntos
Resistência à Insulina , Insulina , Masculino , Humanos , PPAR alfa , Estudos Cross-Over , Hipoglicemiantes , Músculo Esquelético , Fluordesoxiglucose F18 , Lipídeos
2.
Sci Rep ; 13(1): 8346, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221197

RESUMO

Cardiac energy status, measured as phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio with 31P-Magnetic Resonance Spectroscopy (31P-MRS) in vivo, is a prognostic factor in heart failure and is lowered in cardiometabolic disease. It has been suggested that, as oxidative phosphorylation is the major contributor to ATP synthesis, PCr/ATP ratio might be a reflection of cardiac mitochondrial function. The objective of the study was to investigate whether PCr/ATP ratios can be used as in vivo marker for cardiac mitochondrial function. We enrolled thirty-eight patients scheduled for open-heart surgery in this study. Cardiac 31P-MRS was performed before surgery. Tissue from the right atrial appendage was obtained during surgery for high-resolution respirometry for the assessment of mitochondrial function. There was no correlation between the PCr/ATP ratio and ADP-stimulated respiration rates (octanoylcarnitine R2 < 0.005, p = 0.74; pyruvate R2 < 0.025, p = 0.41) nor with maximally uncoupled respiration (octanoylcarnitine R2 = 0.005, p = 0.71; pyruvate R2 = 0.040, p = 0.26). PCr/ATP ratio did correlate with indexed LV end systolic mass. As no direct correlation between cardiac energy status (PCr/ATP) and mitochondrial function in the heart was found, the study suggests that mitochondrial function might not the only determinant of cardiac energy status. Interpretation should be done in the right context in cardiac metabolic studies.


Assuntos
Trifosfato de Adenosina , Mitocôndrias , Humanos , Fosfocreatina , Ácido Pirúvico
3.
Mol Metab ; 72: 101727, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062525

RESUMO

OBJECTIVE: Mitochondrial network dynamics may play role in metabolic homeostasis. Whether mitochondrial network dynamics are involved in adaptations to day-night fluctuations in energy supply and demand is unclear. Here we visualized and quantified the mitochondrial network morphology in human skeletal muscle of young healthy lean and older individuals with obesity over the course of 24 h METHODS: Muscle biopsies taken at 5 timepoints over a 24-hour period obtained from young healthy lean and older metabolically impaired obese males were analyzed for mitochondrial network integrity with confocal laser scanning microscopy. Variation of level of fragmentation over the course of the day were aligned with variation of mitochondrial respiration over the day RESULTS: Young healthy lean individuals displayed a day-night rhythmicity in mitochondrial network morphology, which aligned with the day-night rhythmicity of mitochondrial respiratory capacity, with a more fused network coinciding with higher mitochondrial respiratory capacity. In the older individuals with obesity, the mitochondrial network was more fragmented overall compared to young healthy lean individuals and completely lacked 24 h rhythmicity, which was also true for the mitochondrial respiratory capacity CONCLUSIONS: Our data shows a paralleled rhythmicity between mitochondrial network morphology and mitochondrial oxidative capacity, which oscillates over the course of a mimicked real-life day in human skeletal muscle of young, healthy lean individuals. In older individuals with obesity, the lack of a 24-hour rhythmicity in mitochondrial network connectivity was also aligned with a lack in respiratory capacity. This suggests that 24-hour rhythmicity in mitochondrial network connectivity is a determinant of rhythmicity in mitochondrial respiratory capacity. Thus, restoring mitochondrial network integrity may promote mitochondrial respiratory capacity and hence contribute to blunting the metabolic aberrations in individuals with a disturbed 24-hour rhythmicity in metabolism, like older individuals with obesity.


Assuntos
Músculo Esquelético , Obesidade , Masculino , Humanos , Idoso , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Ritmo Circadiano , Respiração , Biópsia
4.
Nat Commun ; 14(1): 173, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635304

RESUMO

ß2-agonist treatment improves skeletal muscle glucose uptake and whole-body glucose homeostasis in rodents, likely via mTORC2-mediated signalling. However, human data on this topic is virtually absent. We here investigate the effects of two-weeks treatment with the ß2-agonist clenbuterol (40 µg/day) on glucose control as well as energy- and substrate metabolism in healthy young men (age: 18-30 years, BMI: 20-25 kg/m2) in a randomised, placebo-controlled, double-blinded, cross-over study (ClinicalTrials.gov-identifier: NCT03800290). Randomisation occurred by controlled randomisation and the final allocation sequence was seven (period 1: clenbuterol, period 2: placebo) to four (period 1: placebo, period 2: clenbuterol). The primary and secondary outcome were peripheral insulin-stimulated glucose disposal and skeletal muscle GLUT4 translocation, respectively. Primary analyses were performed on eleven participants. No serious adverse events were reported. The study was performed at Maastricht University, Maastricht, The Netherlands, between August 2019 and April 2021. Clenbuterol treatment improved peripheral insulin-stimulated glucose disposal by 13% (46.6 ± 3.5 versus 41.2 ± 2.7 µmol/kg/min, p = 0.032), whereas skeletal muscle GLUT4 translocation assessed in overnight fasted muscle biopsies remained unaffected. These results highlight the potential of ß2-agonist treatment in improving skeletal muscle glucose uptake and underscore the therapeutic value of this pathway for the treatment of type 2 diabetes. However, given the well-known (cardiovascular) side-effects of systemic ß2-agonist treatment, further exploration on the underlying mechanisms is needed to identify viable therapeutic targets.


Assuntos
Clembuterol , Diabetes Mellitus Tipo 2 , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Glucose/metabolismo , Clembuterol/farmacologia , Clembuterol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Estudos Cross-Over , Músculo Esquelético/metabolismo
5.
Metabolism ; 140: 155396, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36592688

RESUMO

AIMS/HYPOTHESIS: Sodium-glucose cotransporter 2 inhibitor (SGLT2i) treatment in type 2 diabetes mellitus patients results in glucosuria, causing an energy loss, and triggers beneficial metabolic adaptations. It is so far unknown if SGLT2i exerts beneficial metabolic effects in prediabetic insulin resistant individuals, yet this is of interest since SGLT2is also reduce the risk for progression of heart failure and chronic kidney disease in patients without diabetes. METHODS: Fourteen prediabetic insulin resistant individuals (BMI: 30.3 ± 2.1 kg/m2; age: 66.3 ± 6.2 years) underwent 2-weeks of treatment with dapagliflozin (10 mg/day) or placebo in a randomized, placebo-controlled, cross-over design. Outcome parameters include 24-hour and nocturnal substrate oxidation, and twenty-four-hour blood substrate and insulin levels. Hepatic glycogen and lipid content/composition were measured by MRS. Muscle biopsies were taken to measure mitochondrial oxidative capacity and glycogen and lipid content. RESULTS: Dapagliflozin treatment resulted in a urinary glucose excretion of 36 g/24-h, leading to a negative energy and fat balance. Dapagliflozin treatment resulted in a higher 24-hour and nocturnal fat oxidation (p = 0.043 and p = 0.039, respectively), and a lower 24-hour carbohydrate oxidation (p = 0.048). Twenty-four-hour plasma glucose levels were lower (AUC; p = 0.016), while 24-hour free fatty acids and nocturnal ß-hydroxybutyrate levels were higher (AUC; p = 0.002 and p = 0.012, respectively) after dapagliflozin compared to placebo. Maximal mitochondrial oxidative capacity was higher after dapagliflozin treatment (dapagliflozin: 87.6 ± 5.4, placebo: 78.1 ± 5.5 pmol/mg/s, p = 0.007). Hepatic glycogen and lipid content were not significantly changed by dapagliflozin compared to placebo. However, muscle glycogen levels were numerically higher in the afternoon in individuals on placebo (morning: 332.9 ± 27.9, afternoon: 368.8 ± 13.1 nmol/mg), while numerically lower in the afternoon on dapagliflozin treatment (morning: 371.7 ± 22.8, afternoon: 340.5 ± 24.3 nmol/mg). CONCLUSIONS/INTERPRETATION: Dapagliflozin treatment of prediabetic insulin resistant individuals for 14 days resulted in significant metabolic adaptations in whole-body and skeletal muscle substrate metabolism despite being weight neutral. Dapagliflozin improved fat oxidation and ex vivo skeletal muscle mitochondrial oxidative capacity, mimicking the effects of calorie restriction. TRIAL REGISTRATION: ClinicalTrials.gov NCT03721874.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Pessoa de Meia-Idade , Idoso , Insulina/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Estado Pré-Diabético/tratamento farmacológico , Estudos Cross-Over , Glicemia/metabolismo , Glicogênio Hepático , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Compostos Benzidrílicos/farmacologia , Glucose , Lipídeos , Sódio , Método Duplo-Cego , Hipoglicemiantes/uso terapêutico
6.
Mol Metab ; 66: 101620, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36280113

RESUMO

OBJECTIVE: SGLT2 inhibitors increase urinary glucose excretion and have beneficial effects on cardiovascular and renal outcomes; the underlying mechanism may be metabolic adaptations due to urinary glucose loss. Here, we investigated the cellular and molecular effects of 5 weeks of dapagliflozin treatment on skeletal muscle metabolism in type 2 diabetes patients. METHODS: Twenty-six type 2 diabetes mellitus patients were randomized to a 5-week double-blind, cross-over study with 6-8-week wash-out. Skeletal muscle acetylcarnitine levels, intramyocellular lipid (IMCL) content and phosphocreatine (PCr) recovery rate were measured by magnetic resonance spectroscopy (MRS). Ex vivo mitochondrial respiration was measured in skeletal muscle fibers using high resolution respirometry. Intramyocellular lipid droplet and mitochondrial network dynamics were investigated using confocal microscopy. Skeletal muscle levels of acylcarnitines, amino acids and TCA cycle intermediates were measured. Expression of genes involved in fatty acid metabolism were investigated. RESULTS: Mitochondrial function, mitochondrial network integrity and citrate synthase and carnitine acetyltransferase activities in skeletal muscle were unaltered after dapagliflozin treatment. Dapagliflozin treatment increased intramyocellular lipid content (0.060 (0.011, 0.110) %, p = 0.019). Myocellular lipid droplets increased in size (0.03 µm2 (0.01-0.06), p < 0.05) and number (0.003 µm-2 (-0.001-0.007), p = 0.09) upon dapagliflozin treatment. CPT1A, CPT1B and malonyl CoA-decarboxylase mRNA expression was increased by dapagliflozin. Fasting acylcarnitine species and C4-OH carnitine levels (0.4704 (0.1246, 0.8162) pmoles∗mg tissue-1, p < 0.001) in skeletal muscle were higher after dapagliflozin treatment, while acetylcarnitine levels were lower (-40.0774 (-64.4766, -15.6782) pmoles∗mg tissue-1, p < 0.001). Fasting levels of several amino acids, succinate, alpha-ketoglutarate and lactate in skeletal muscle were significantly lower after dapagliflozin treatment. CONCLUSION: Dapagliflozin treatment for 5 weeks leads to adaptive changes in skeletal muscle substrate metabolism favoring metabolism of fatty acid and ketone bodies and reduced glycolytic flux. The trial is registered with ClinicalTrials.gov, number NCT03338855.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Estudos Cross-Over , Acetilcarnitina/metabolismo , Acetilcarnitina/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Glucose/metabolismo , Ácidos Graxos/metabolismo , Lipídeos , Aminoácidos/metabolismo
7.
FASEB J ; 35(6): e21611, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33977623

RESUMO

Circadian misalignment, as seen in shift work, is associated with an increased risk to develop type 2 diabetes. In an experimental setting, we recently showed that a rapid day-night shift for 3 consecutive nights leads to misalignment of the core molecular clock, induction of the PPAR pathway, and insulin resistance in skeletal muscle of young, healthy men. Here, we investigated if circadian misalignment affects the skeletal muscle lipidome and intramyocellular lipid droplet characteristics, explaining the misalignment-induced insulin resistance. Fourteen healthy men underwent one aligned and one circadian misalignment period, both consisting of ~3.5 days. In the misaligned condition, day and night were rapidly shifted by 12 hours leading to opposite eating, sleep, and activity times compared with the aligned condition. For each condition, two muscle biopsies were taken from the m. vastus lateralis in the morning and evening and subjected to semi-targeted lipidomics and confocal microscopy analysis. We found that only 2% of detected lipids were different between morning and evening in the aligned condition, whereas 12% displayed a morning-evening difference upon misalignment. Triacylglycerols, in particular species of a carbon length ≥55, were the most abundant lipid species changed upon misalignment. Cardiolipins were decreased upon misalignment, whereas phosphatidylcholines consistently followed the same morning-evening pattern, suggesting regulation by the circadian clock. Cholesteryl esters adjusted to the shifted behavior. Lipid droplet characteristics remained unaltered upon misalignment. Together, these findings show that simulated shift work disturbs the skeletal muscle lipidome, which may contribute to misalignment-induced insulin resistance.


Assuntos
Ritmo Circadiano , Lipidômica/métodos , Lipídeos/análise , Músculo Esquelético/patologia , Adulto , Humanos , Masculino , Músculo Esquelético/metabolismo , Adulto Jovem
8.
Nat Commun ; 12(1): 1516, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750795

RESUMO

Mild cold acclimation for 10 days has been previously shown to markedly improve insulin sensitivity in patients with type 2 diabetes. Here we show in a single-arm intervention study (Trialregister.nl ID: NL4469/NTR5711) in nine patients with type 2 diabetes that ten days of mild cold acclimation (16-17 °C) in which observable, overt shivering was prevented, does not result in improved insulin sensitivity, postprandial glucose and lipid metabolism or intrahepatic lipid content and only results in mild effects on overnight fasted fat oxidation, postprandial energy expenditure and aortic augmentation index. The lack of marked metabolic effects in this study is associated with a lack of self-reported shivering and a lack of upregulation of gene expression of muscle activation or muscle contraction pathways in skeletal muscle and suggests that some form of muscle contraction is needed for beneficial effects of mild cold acclimation.


Assuntos
Aclimatação/fisiologia , Regulação da Temperatura Corporal/fisiologia , Temperatura Baixa , Diabetes Mellitus Tipo 2/metabolismo , Idoso , Jejum , Feminino , Glucose/metabolismo , Humanos , Resistência à Insulina , Cinética , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético , Oxirredução
9.
Am J Physiol Endocrinol Metab ; 320(3): E619-E628, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522400

RESUMO

Prolonged supplementation with the ß2-agonist clenbuterol improves glucose homeostasis in diabetic rodents, likely via ß2-adrenoceptor (ß2-AR)-mediated effects in the skeletal muscle and liver. However, since rodents have, in contrast to-especially diabetic-humans, substantial quantities of brown adipose tissue (BAT) and clenbuterol has affinity to ß1- and ß3-ARs, the contribution of BAT to these improvements is unclear. Therefore, we investigated clenbuterol-mediated improvements in glucose homeostasis in uncoupling protein 1-deficient (UCP1-/-) mice, lacking thermogenic BAT, versus wild-type (WT) mice. Anesthetized WT and UCP1-/- C57Bl/6 mice were injected with saline or clenbuterol and whole body oxygen consumption was measured. Furthermore, male WT and UCP1-/- C57Bl/6 mice were subjected to 17-wk of chow feeding, high-fat feeding, or high-fat feeding with clenbuterol treatment between weeks 13 and 17. Body composition was measured weekly with MRI. Oral glucose tolerance and insulin tolerance tests were performed in week 15 and 17, respectively. Clenbuterol increased oxygen consumption approximately twofold in WT mice. This increase was blunted in UCP1-/- mice, indicating clenbuterol-mediated activation of BAT thermogenesis. High-fat feeding induced diabetogenic phenotypes in both genotypes. However, low-dose clenbuterol treatment for 2 wk significantly reduced fasting blood glucose by 12.9% in WT and 14.8% in UCP1-/- mice. Clenbuterol treatment improved glucose and insulin tolerance in both genotypes compared with HFD controls and normalized to chow-fed control mice independent of body mass and composition alterations. Clenbuterol improved whole body glucose homeostasis independent of UCP1. Given the low human abundancy of BAT, ß2-AR agonist treatment provides a potential novel route for glucose disposal in diabetic humans.NEW & NOTEWORTHY Improvements in whole body glucose homeostasis of rodents upon prolonged ß2-adrenergic agonist supplementation could potentially be attributed to UCP1-mediated BAT thermogenesis. Indeed, we show that acute injection with the ß2-AR agonist clenbuterol induces BAT activation in mice. However, we also demonstrate that prolonged clenbuterol supplementation robustly improves whole body glucose and insulin tolerance in a similar way in both DIO WT and UCP1-/- mice, indicating that ß2-AR agonist supplementation improves whole body glucose homeostasis independent of UCP1-mediated BAT thermogenesis.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Glucose/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Proteína Desacopladora 1/genética , Tecido Adiposo Marrom/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Clembuterol/administração & dosagem , Clembuterol/farmacologia , Dieta Hiperlipídica , Esquema de Medicação , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Homeostase/genética , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/patologia , Receptores Adrenérgicos beta 2/metabolismo , Termogênese/efeitos dos fármacos , Termogênese/genética , Fatores de Tempo , Proteína Desacopladora 1/deficiência
10.
J Clin Endocrinol Metab ; 106(5): 1437-1447, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33524145

RESUMO

CONTEXT: Elevating nicotinamide adenine dinucleotide (NAD+) levels systemically improves metabolic health, which can be accomplished via nicotinamide riboside (NR). Previously, it was demonstrated that NR supplementation in high-fat-diet (HFD)-fed mice decreased weight gain, normalized glucose metabolism, and enhanced cold tolerance. OBJECTIVE: Because brown adipose tissue (BAT) is a major source of thermogenesis, we hypothesize that NR stimulates BAT in mice and humans. DESIGN AND INTERVENTION: HFD-fed C56BL/6J mice were supplemented with 400 mg/kg/day NR for 4 weeks and subsequently exposed to cold. In vitro primary adipocytes derived from human BAT biopsies were pretreated with 50 µM or 500 µM NR before measuring mitochondrial uncoupling. Human volunteers (45-65 years; body mass index, 27-35 kg/m2) were supplemented with 1000 mg/day NR for 6 weeks to determine whether BAT activity increased, as measured by [18F]FDG uptake via positron emission tomography-computed tomography (randomized, double blinded, placebo-controlled, crossover study with NR supplementation). RESULTS: NR supplementation in HFD-fed mice decreased adipocyte cell size in BAT. Cold exposure further decreased adipocyte cell size on top of that achieved by NR alone independent of ex vivo lipolysis. In adipocytes derived from human BAT, NR enhanced in vitro norepinephrine-stimulated mitochondrial uncoupling. However, NR supplementation in human volunteers did not alter BAT activity or cold-induced thermogenesis. CONCLUSIONS: NR stimulates in vitro human BAT but not in vivo BAT in humans. Our research demonstrates the need for further translational research to better understand the differences in NAD+ metabolism in mouse and human.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Niacinamida/análogos & derivados , Compostos de Piridínio/farmacologia , Receptores Adrenérgicos/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiologia , Adrenérgicos/farmacologia , Idoso , Animais , Células Cultivadas , Estudos Cross-Over , Método Duplo-Cego , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Niacinamida/farmacologia , Cultura Primária de Células , Termogênese/efeitos dos fármacos
11.
Physiol Rep ; 9(2): e14692, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33476086

RESUMO

In non-athletes, insulin sensitivity correlates negatively with intramyocellular lipid (IMCL) content. In athletes, however, a pattern of benign IMCL storage exists, which is characterized by lipid storage in type I muscle fibres, in small and numerous lipid droplets (LDs) preferable coated with PLIN5, without affecting insulin sensitivity. Administration of resveratrol has been promoted for its beneficial effects on glucose homeostasis. We observed that 30 days of oral resveratrol administration (150 mg/day) in metabolically compromised individuals showed a 33% increase in IMCL (placebo vs. resveratrol; 0.86 ± 0.090 AU vs. 1.14 ± 0.11 AU, p = 0.003) without impeding insulin sensitivity. Thus, the aim of the present study was to examine if a resveratrol-mediated increase in IMCL content, in metabolically compromised individuals, changes the LD phenotype towards the phenotype we previously observed in athletes. For this, we studied IMCL, LD number, LD size, subcellular distribution and PLIN5 coating in different fibre types using high-resolution confocal microscopy. As proof of concept, we observed a 2.3-fold increase (p = 0.038) in lipid accumulation after 48 h of resveratrol incubation in cultured human primary muscle cells. In vivo analysis showed that resveratrol-induced increase in IMCL is predominantly in type I muscle fibres (placebo vs. resveratrol; 0.97 ± 0.16% vs. 1.26 ± 0.09%; p = 0.030) in both the subsarcolemmal (p = 0.016) and intermyofibrillar region (p = 0.026) and particularly in PLIN5-coated LDs (p = 0.024). These data indicate that administration of resveratrol augments IMCL content in metabolically compromised individuals towards a LD phenotype that mimics an 'athlete like phenotype'.


Assuntos
Atletas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Exercício Físico , Resistência à Insulina , Gotículas Lipídicas/efeitos dos fármacos , Músculo Quadríceps/efeitos dos fármacos , Resveratrol/farmacologia , Antioxidantes/farmacologia , Biópsia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Cultura Primária de Células , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Artigo em Inglês | MEDLINE | ID: mdl-33160079

RESUMO

In many different cell types neutral lipids can be stored in lipid droplets (LDs). Nowadays, LDs are viewed as dynamic organelles, which store and release fatty acids depending on energy demand (LD dynamics). Proteins like perilipin 2 (PLIN2) and PLIN5 decorate the LD membrane and are determinants of LD lipolysis and fat oxidation, thus affecting LD dynamics. Trained athletes and type 2 diabetes (T2D) patients both have high levels of intramyocellular lipid (IMCL). While IMCL content scales negatively with insulin resistance, athletes are highly insulin sensitive in contrast to T2D patients, the so-called athlete's paradox. Differences in LD dynamics may be an underlying factor explaining the athlete's paradox. We aimed to quantify PLIN2 and PLIN5 content at individual LDs as a reflection of the ability to switch between fatty acid release and storage depending on energy demand. Thus, we developed a novel fluorescent super-resolution microscopy approach and found that PLIN2 protein abundance at the LD surface was higher in T2D patients than in athletes. Localization of adipocyte triglyceride lipase (ATGL) to the LD surface was lower in LDs abundantly decorated with PLIN2. While PLIN5 abundance at the LD surface was similar in athletes and T2D patients, we have observed previously that the number of PLIN5 decorated LDs was higher in athletes, indicating more LDs in close association with mitochondria. Thus, in athletes interaction of LDs with mitochondria was more pronounced and LDs have the protein machinery to be more dynamic, while in T2D patients the LD pool is more inert. This observation contributes to our understanding of the athlete's paradox.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Treino Aeróbico , Lipase/metabolismo , Gotículas Lipídicas/metabolismo , Perilipina-2/metabolismo , Perilipina-5/metabolismo , Adulto , Idoso , Atletas , Biomarcadores/análise , Biomarcadores/metabolismo , Biópsia , Diabetes Mellitus Tipo 2/patologia , Ácidos Graxos/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina , Lipase/análise , Lipólise , Masculino , Microscopia Confocal/métodos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Oxirredução , Perilipina-2/análise , Perilipina-5/análise , Adulto Jovem
13.
Diabetologia ; 64(2): 424-436, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33258025

RESUMO

AIMS/HYPOTHESIS: Mitochondria operate in networks, adapting to external stresses and changes in cellular metabolic demand and are subject to various quality control mechanisms. On the basis of these traits, we here hypothesise that the regulation of mitochondrial networks in skeletal muscle is hampered in humans with compromised oxidative capacity and insulin sensitivity. METHODS: In a cross-sectional design, we compared four groups of participants (selected from previous studies) ranging in aerobic capacity and insulin sensitivity, i.e. participants with type 2 diabetes (n = 11), obese participants without diabetes (n = 12), lean individuals (n = 10) and endurance-trained athletes (n = 12); basal, overnight fasted muscle biopsies were newly analysed for the current study and we compared the levels of essential mitochondrial dynamics and quality control regulatory proteins in skeletal muscle tissue. RESULTS: Type 2 diabetes patients and obese participants were older than lean participants and athletes (58.6 ± 4.0 and 56.7 ± 7.2 vs 21.8 ± 2.5 and 25.1 ± 4.3 years, p < 0.001, respectively) and displayed a higher BMI (32.4 ± 3.7 and 31.0 ± 3.7 vs 22.1 ± 1.8 and 21.0 ± 1.5 kg/m2, p < 0.001, respectively) than lean individuals and endurance-trained athletes. Fission protein 1 (FIS1) and optic atrophy protein 1 (OPA1) protein content was highest in muscle from athletes and lowest in participants with type 2 diabetes and obesity, respectively (FIS1: 1.86 ± 0.79 vs 0.79 ± 0.51 AU, p = 0.002; and OPA1: 1.55 ± 0.64 vs 0.76 ± 0.52 AU, p = 0.014), which coincided with mitochondrial network fragmentation in individuals with type 2 diabetes, as assessed by confocal microscopy in a subset of type 2 diabetes patients vs endurance-trained athletes (n = 6). Furthermore, lean individuals and athletes displayed a mitonuclear protein balance that was different from obese participants and those with type 2 diabetes. Mitonuclear protein balance also associated with heat shock protein 60 (HSP60) protein levels, which were higher in athletes when compared with participants with obesity (p = 0.048) and type 2 diabetes (p = 0.002), indicative for activation of the mitochondrial unfolded protein response. Finally, OPA1, FIS1 and HSP60 correlated positively with aerobic capacity (r = 0.48, p = 0.0001; r = 0.55, p < 0.001 and r = 0.61, p < 0.0001, respectively) and insulin sensitivity (r = 0.40, p = 0.008; r = 0.44, p = 0.003 and r = 0.48, p = 0.001, respectively). CONCLUSIONS/INTERPRETATION: Collectively, our data suggest that mitochondrial dynamics and quality control in skeletal muscle are linked to oxidative capacity in humans, which may play a role in the maintenance of muscle insulin sensitivity. CLINICAL TRIAL REGISTRY: numbers NCT00943059, NCT01298375 and NL1888 Graphical abstract.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Mitocôndrias Musculares/metabolismo , Dinâmica Mitocondrial , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Adulto , Atletas , Biópsia , Estudos de Casos e Controles , Chaperonina 60/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , GTP Fosfo-Hidrolases/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Mitocôndrias Musculares/patologia , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/patologia , Obesidade/patologia , Oxirredução , Consumo de Oxigênio , Adulto Jovem
14.
PLoS One ; 15(9): e0239506, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32976523

RESUMO

BACKGROUND: Low carnitine status may underlie the development of insulin resistance and metabolic inflexibility. Intravenous lipid infusion elevates plasma free fatty acid (FFA) concentration and is a model for simulating insulin resistance and metabolic inflexibility in healthy, insulin sensitive volunteers. Here, we hypothesized that co-infusion of L-carnitine may alleviate lipid-induced insulin resistance and metabolic inflexibility. METHODS: In a randomized crossover trial, eight young healthy volunteers underwent hyperinsulinemic-euglycemic clamps (40mU/m2/min) with simultaneous infusion of saline (CON), Intralipid (20%, 90mL/h) (LIPID), or Intralipid (20%, 90mL/h) combined with L-carnitine infusion (28mg/kg) (LIPID+CAR). Ten volunteers were randomized for the intervention arms (CON, LIPID and LIPID+CAR), but two dropped-out during the study. Therefore, eight volunteers participated in all three intervention arms and were included for analysis. RESULTS: L-carnitine infusion elevated plasma free carnitine availability and resulted in a more pronounced increase in plasma acetylcarnitine, short-, medium-, and long-chain acylcarnitines compared to lipid infusion, however no differences in skeletal muscle free carnitine or acetylcarnitine were found. Peripheral insulin sensitivity and metabolic flexibility were blunted upon lipid infusion compared to CON but L-carnitine infusion did not alleviate this. CONCLUSION: Acute L-carnitine infusion could not alleviated lipid-induced insulin resistance and metabolic inflexibility and did not alter skeletal muscle carnitine availability. Possibly, lipid-induced insulin resistance may also have affected carnitine uptake and may have blunted the insulin-induced carnitine storage in muscle. Future studies are needed to investigate this.


Assuntos
Carnitina/administração & dosagem , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Resistência à Insulina/fisiologia , Lipídeos/administração & dosagem , Adulto , Carnitina/análogos & derivados , Carnitina/sangue , Estudos Cross-Over , Emulsões/administração & dosagem , Humanos , Bombas de Infusão , Insulina/sangue , Insulina/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fosfolipídeos/administração & dosagem , Óleo de Soja/administração & dosagem , Adulto Jovem
15.
Diabetologia ; 63(8): 1603-1615, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32472192

RESUMO

AIMS/HYPOTHESIS: Chronic stimulation of ß2-adrenoceptors, opposite to acute treatment, was reported to reduce blood glucose levels, as well as to improve glucose and insulin tolerance in rodent models of diabetes by essentially unknown mechanisms. We recently described a novel pathway that mediates glucose uptake in skeletal muscle cells via stimulation of ß2-adrenoceptors. In the current study we further explored the potential therapeutic relevance of ß2-adrenoceptor stimulation to improve glucose homeostasis and the mechanisms responsible for the effect. METHODS: C57Bl/6N mice with diet-induced obesity were treated both acutely and for up to 42 days with a wide range of clenbuterol dosages and treatment durations. Glucose homeostasis was assessed by glucose tolerance test. We also measured in vivo glucose uptake in skeletal muscle, insulin sensitivity by insulin tolerance test, plasma insulin levels, hepatic lipids and glycogen. RESULTS: Consistent with previous findings, acute clenbuterol administration increased blood glucose and insulin levels. However, already after 4 days of treatment, beneficial effects of clenbuterol were manifested in glucose homeostasis (32% improvement of glucose tolerance after 4 days of treatment, p < 0.01) and these effects persisted up to 42 days of treatment. These favourable metabolic effects could be achieved with doses as low as 0.025 mg kg-1 day-1 (40 times lower than previously studied). Mechanistically, these effects were not due to increased insulin levels, but clenbuterol enhanced glucose uptake in skeletal muscle in vivo both acutely in lean mice (by 64%, p < 0.001) as well as during chronic treatment in diet-induced obese mice (by 74%, p < 0.001). Notably, prolonged treatment with low-dose clenbuterol improved whole-body insulin sensitivity (glucose disposal rate after insulin injection increased up to 1.38 ± 0.31%/min in comparison with 0.15 ± 0.36%/min in control mice, p < 0.05) and drastically reduced hepatic steatosis (by 40%, p < 0.01) and glycogen (by 23%, p < 0.05). CONCLUSIONS/INTERPRETATION: Clenbuterol improved glucose tolerance after 4 days of treatment and these effects were maintained for up to 42 days. Effects were achieved with doses in a clinically relevant microgram range. Mechanistically, prolonged treatment with a low dose of clenbuterol improved glucose homeostasis in insulin resistant mice, most likely by stimulating glucose uptake in skeletal muscle and improving whole-body insulin sensitivity as well as by reducing hepatic lipids and glycogen. We conclude that selective ß2-adrenergic agonists might be an attractive potential treatment for type 2 diabetes. This remains to be confirmed in humans. Graphical abstract.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Clembuterol/uso terapêutico , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Animais , Homeostase/efeitos dos fármacos , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo
16.
J Cell Physiol ; 235(12): 9851-9863, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32452584

RESUMO

Using an unbiased high-throughput microRNA (miRNA)-silencing screen combined with functional readouts for mitochondrial oxidative capacity in C2C12 myocytes, we previously identified 19 miRNAs as putative regulators of skeletal muscle mitochondrial metabolism. In the current study, we highlight miRNA-204-5p, identified from this screen, and further studied its role in the regulation of skeletal muscle mitochondrial function. Following silencing of miRNA-204-5p in C2C12 myotubes, gene and protein expression were assessed using quantitative polymerase chain reaction, microarray analysis, and western blot analysis, while morphological changes were studied by confocal microscopy. In addition, miRNA-204-5p expression was quantified in human skeletal muscle biopsies and associated with in vivo mitochondrial oxidative capacity. Transcript levels of PGC-1α (3.71-fold; p < .01), predicted as an miR-204-5p target, as well as mitochondrial DNA copy number (p < .05) and citrate synthase activity (p = .06) were increased upon miRNA-204-5p silencing in C2C12 myotubes. Silencing of miRNA-204-5p further resulted in morphological changes, induced gene expression of autophagy marker light chain 3 protein b (LC3B; q = .05), and reduced expression of the mitophagy marker FUNDC1 (q = .01). Confocal imaging revealed colocalization between the autophagosome marker LC3B and the mitochondrial marker OxPhos upon miRNA-204-5p silencing. Finally, miRNA-204-5p was differentially expressed in human subjects displaying large variation in oxidative capacity and its expression levels associated with in vivo measures of skeletal muscle mitochondrial function. In summary, silencing of miRNA-204-5p in C2C12 myotubes stimulated mitochondrial biogenesis, impacted on cellular morphology, and altered expression of markers related to autophagy and mitophagy. The association between miRNA-204-5p and in vivo mitochondrial function in human skeletal muscle further identifies miRNA-204-5p as an interesting modulator of skeletal muscle mitochondrial metabolism.


Assuntos
MicroRNAs/genética , Mitocôndrias/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Animais , Autofagia/genética , Biópsia , Humanos , Camundongos , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo , Mitofagia/genética , Biogênese de Organelas , Oxirredução , Estresse Oxidativo/genética
17.
Acta Physiol (Oxf) ; 229(4): e13488, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32359193

RESUMO

AIM: Heat exposure has been indicated to positively affect glucose metabolism. An involvement of heat shock protein 72 (HSP72) in the enhancement of insulin sensitivity upon heat exposure has been previously suggested. Here, we performed an intervention study exploring the effect of passive heat acclimation (PHA) on glucose metabolism and intracellular (a) HSP72 concentrations in overweight humans. METHODS: Eleven non-diabetic overweight (BMI 27-35 kg/m2 ) participants underwent 10 consecutive days of PHA (4-6 h/day, 34.4 ± 0.2°C, 22.8 ± 2.7%RH). Before and after PHA, whole-body insulin sensitivity was assessed using a one-step hyperinsulinaemic-euglycaemic clamp, skeletal muscle biopsies were taken to measure intracellular iHSP72, energy expenditure and substrate oxidation were measured using indirect calorimetry and blood samples were drawn to assess markers of metabolic health. Thermophysiological adaptations were measured during a temperature ramp protocol before and after PHA. RESULTS: Despite a lack of change in iHSP72, 10 days of PHA reduced basal (9.7 ± 1.4 pre- vs 8.4 ± 2.1 µmol · kg-1 · min-1 post-PHA, P = .038) and insulin-stimulated (2.1 ± 0.9 pre- vs 1.5 ± 0.8 µmol · kg-1 · min-1 post-PHA, P = .005) endogenous glucose production (EGP) and increased insulin suppression of EGP (78.5 ± 9.7% pre- vs 83.0 ± 7.9% post-PHA, P = .028). Consistently, fasting plasma glucose (6.0 ± 0.5 pre- vs 5.8 ± 0.4 mmol/L post-PHA, P = .013) and insulin concentrations (97 ± 55 pre- vs 84 ± 49 pmol/L post-PHA, P = .026) decreased significantly. Moreover, fat oxidation increased, and free fatty acids as well as cholesterol concentrations and mean arterial pressure decreased after PHA. CONCLUSION: Our results show that PHA for 10 days improves glucose metabolism and enhances fat metabolism, without changes in iHSP72. Further exploration of the therapeutic role of heat in cardio-metabolic disorders should be considered.


Assuntos
Glucose/metabolismo , Hipertermia Induzida , Resistência à Insulina , Idoso , Glicemia , Diabetes Mellitus Tipo 2 , Técnica Clamp de Glucose , Humanos , Insulina , Pessoa de Meia-Idade , Sobrepeso
18.
Diabetologia ; 63(6): 1211-1222, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32185462

RESUMO

AIMS/HYPOTHESIS: Physical inactivity, low mitochondrial function, increased intramyocellular lipid (IMCL) deposition and reduced insulin sensitivity are common denominators of chronic metabolic disorders, like obesity and type 2 diabetes. Yet, whether low mitochondrial function predisposes to insulin resistance in humans is still unknown. METHODS: Here we investigated, in an intervention study, whether muscle with low mitochondrial oxidative capacity, induced by one-legged physical inactivity, would feature stronger signs of lipid-induced insulin resistance. To this end, ten male participants (age 22.4 ± 4.2 years, BMI 21.3 ± 2.0 kg/m2) underwent a 12 day unilateral lower-limb suspension with the contralateral leg serving as an active internal control. RESULTS: In vivo, mitochondrial oxidative capacity, assessed by phosphocreatine (PCr)-recovery half-time, was lower in the inactive vs active leg. Ex vivo, palmitate oxidation to 14CO2 was lower in the suspended leg vs the active leg; however, this did not result in significantly higher [14C]palmitate incorporation into triacylglycerol. The reduced mitochondrial function in the suspended leg was, however, paralleled by augmented IMCL content in both musculus tibialis anterior and musculus vastus lateralis, and by increased membrane bound protein kinase C (PKC) θ. Finally, upon lipid infusion, insulin signalling was lower in the suspended vs active leg. CONCLUSIONS/INTERPRETATION: Together, these results demonstrate, in a unique human in vivo model, that a low mitochondrial oxidative capacity due to physical inactivity directly impacts IMCL accumulation and PKCθ translocation, resulting in impaired insulin signalling upon lipid infusion. This demonstrates the importance of mitochondrial oxidative capacity and muscle fat accumulation in the development of insulin resistance in humans. TRIAL REGISTRATION: ClinicalTrial.gov NCT01576250. FUNDING: PS was supported by a 'VICI' Research Grant for innovative research from the Netherlands Organization for Scientific Research (Grant 918.96.618).


Assuntos
Insulina/metabolismo , Perna (Membro)/fisiologia , Músculo Esquelético/metabolismo , Restrição Física/fisiologia , Humanos , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Masculino , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
19.
Eur J Nutr ; 59(5): 2039-2045, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31317217

RESUMO

PURPOSE: Lowering of LDL cholesterol levels by plant sterols and stanols is associated with decreased risk of cardiovascular disease in humans. Plant sterols and stanols also lower triacylglycerol (TG). However, it is not fully understood how reduction in TG is achieved and what the full potential of plant sterols and stanols is on whole-body metabolism. We here hypothesize that high levels of plant sterols and stanols stimulate whole-body energy expenditure, which can be attributed to changes in mitochondrial function of brown adipose tissue (BAT), skeletal muscle and liver. METHODS: Phytosterolemic mice were fed chow diets for 32 weeks to examine whole-body weight gain. In vitro, 24-h incubation were performed in adipocytes derived from human BAT, human myotubes or HepG2 human hepatocytes using sitosterol or sitostanol. Following mitochondrial function was assessed using seahorse bioanalyzer. RESULTS: Chow feeding in phytosterolemic mice resulted in diminished increase in body weight compared to control mice. In vitro, sitosterol or sitostanol did not change mitochondrial function in adipocytes derived from human BAT or in cultured human myotubes. Interestingly, maximal mitochondrial function in HepG2 human hepatocytes was decreased following sitosterol or sitostanol incubation, however, only when mitochondrial function was assessed in low glucose-containing medium. CONCLUSIONS: Beneficial in vivo effects of plant sterols and stanols on lipid and lipoprotein metabolism are well recognized. Our results indicate that alterations in human mitochondrial function are apparently not involved to explain these beneficial effects.


Assuntos
Fitosteróis , Sitosteroides , Adipócitos Marrons , Animais , Hepatócitos , Humanos , Camundongos , Mitocôndrias , Fibras Musculares Esqueléticas , Respiração
20.
EBioMedicine ; 49: 318-330, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31676389

RESUMO

BACKGROUND: Type 2 diabetes patients and individuals at risk of developing diabetes are characterized by metabolic inflexibility and disturbed glucose homeostasis. Low carnitine availability may contribute to metabolic inflexibility and impaired glucose tolerance. Here, we investigated whether carnitine supplementation improves metabolic flexibility and insulin sensitivity in impaired glucose tolerant (IGT) volunteers. METHODS: Eleven IGT- volunteers followed a 36-day placebo- and L-carnitine treatment (2 g/day) in a randomised, placebo-controlled, double blind crossover design. A hyperinsulinemic-euglycemic clamp (40 mU/m2/min), combined with indirect calorimetry (ventilated hood) was performed to determine insulin sensitivity and metabolic flexibility. Furthermore, metabolic flexibility was assessed in response to a high-energy meal. Skeletal muscle acetylcarnitine concentrations were measured in vivo using long echo time proton magnetic resonance spectroscopy (1H-MRS, TE=500 ms) in the resting state (7:00AM and 5:00PM) and after a 30-min cycling exercise. Twelve normal glucose tolerant (NGT) volunteers were included without any intervention as control group. RESULTS: Metabolic flexibility of IGT-subjects completely restored towards NGT control values upon carnitine supplementation, measured during a hyperinsulinemic-euglycemic clamp and meal test. In muscle, carnitine supplementation enhanced the increase in resting acetylcarnitine concentrations over the day (delta 7:00 AM versus 5:00 PM) in IGT-subjects. Furthermore, carnitine supplementation increased post-exercise acetylcarnitine concentrations and reduced long-chain acylcarnitine species in IGT-subjects, suggesting the stimulation of a more complete fat oxidation in muscle. Whole-body insulin sensitivity was not affected. CONCLUSION: Carnitine supplementation improves acetylcarnitine formation and rescues metabolic flexibility in IGT-subjects. Future research should investigate the potential of carnitine in prevention/treatment of type 2 diabetes.


Assuntos
Acetilcarnitina/metabolismo , Carnitina/farmacologia , Suplementos Nutricionais , Voluntários Saudáveis , Músculo Esquelético/metabolismo , Acetilcarnitina/sangue , Composição Corporal/efeitos dos fármacos , Carnitina/sangue , Feminino , Teste de Tolerância a Glucose , Glicogênio/metabolismo , Humanos , Hiperinsulinismo/sangue , Resistência à Insulina , Cinética , Masculino , Metaboloma , Pessoa de Meia-Idade , Consumo de Oxigênio/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...