Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457201

RESUMO

We have recently identified point mutation V336Y in mitoribosomal protein Mrps5 (uS5m) as a mitoribosomal ram (ribosomal ambiguity) mutation conferring error-prone mitochondrial protein synthesis. In vivo in transgenic knock-in animals, homologous mutation V338Y was associated with a discrete phenotype including impaired mitochondrial function, anxiety-related behavioral alterations, enhanced susceptibility to noise-induced hearing damage, and accelerated metabolic aging in muscle. To challenge the postulated link between Mrps5 V338Y-mediated misreading and the in vivo phenotype, we introduced mutation G315R into the mouse Mrps5 gene as Mrps5 G315R is homologous to the established bacterial ram mutation RpsE (uS5) G104R. However, in contrast to bacterial translation, the homologous G → R mutation in mitoribosomal Mrps5 did not affect the accuracy of mitochondrial protein synthesis. Importantly, in the absence of mitochondrial misreading, homozygous mutant MrpS5G315R/G315R mice did not show a phenotype distinct from wild-type animals.


Assuntos
Proteínas Mitocondriais , Proteínas Ribossômicas , Animais , Camundongos , Proteínas Mitocondriais/genética , Mutação , Fenótipo , Filogenia , Biossíntese de Proteínas , Proteínas Ribossômicas/genética
2.
ChemMedChem ; 16(2): 335-339, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33007139

RESUMO

We describe the convergent synthesis of a 5-O-ß-D-ribofuranosyl-based apramycin derivative (apralog) that displays significantly improved antibacterial activity over the parent apramycin against wild-type ESKAPE pathogens. In addition, the new apralog retains excellent antibacterial activity in the presence of the only aminoglycoside modifying enzyme (AAC(3)-IV) acting on the parent, without incurring susceptibility to the APH(3') mechanism that disables other 5-O-ß-D-ribofuranosyl 2-deoxystreptamine type aminoglycosides by phosphorylation at the ribose 5-position. Consistent with this antibacterial activity, the new apralog has excellent 30 nM activity (IC50 ) for the inhibition of protein synthesis by the bacterial ribosome in a cell-free translation assay, while retaining the excellent across-the-board selectivity of the parent for inhibition of bacterial over eukaryotic ribosomes. Overall, these characteristics translate into excellent in vivo efficacy against E. coli in a mouse thigh infection model and reduced ototoxicity vis à vis the parent in mouse cochlear explants.


Assuntos
Antibacterianos/farmacologia , Cóclea/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Nebramicina/análogos & derivados , Animais , Antibacterianos/síntese química , Antibacterianos/química , Configuração de Carboidratos , Cóclea/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Nebramicina/síntese química , Nebramicina/química , Nebramicina/farmacologia
3.
J Am Chem Soc ; 142(1): 530-544, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31790244

RESUMO

Apramycin is a structurally unique member of the 2-deoxystreptamine class of aminoglycoside antibiotics characterized by a monosubstituted 2-deoxystreptamine ring that carries an unusual bicyclic eight-carbon dialdose moiety. Because of its unusual structure, apramycin is not susceptible to the most prevalent mechanisms of aminoglycoside resistance including the aminoglycoside-modifying enzymes and the ribosomal methyltransferases whose widespread presence severely compromises all aminoglycosides in current clinical practice. These attributes coupled with minimal ototoxocity in animal models combine to make apramycin an excellent starting point for the development of next-generation aminoglycoside antibiotics for the treatment of multidrug-resistant bacterial infections, particularly the ESKAPE pathogens. With this in mind, we describe the design, synthesis, and evaluation of three series of apramycin derivatives, all functionalized at the 5-position, with the goals of increasing the antibacterial potency without sacrificing selectivity between bacterial and eukaryotic ribosomes and of overcoming the rare aminoglycoside acetyltransferase (3)-IV class of aminoglycoside-modifying enzymes that constitutes the only documented mechanism of antimicrobial resistance to apramycin. We show that several apramycin-5-O-ß-d-ribofuranosides, 5-O-ß-d-eryrthofuranosides, and even simple 5-O-aminoalkyl ethers are effective in this respect through the use of cell-free translation assays with wild-type bacterial and humanized bacterial ribosomes and of extensive antibacterial assays with wild-type and resistant Gram negative bacteria carrying either single or multiple resistance determinants. Ex vivo studies with mouse cochlear explants confirm the low levels of ototoxicity predicted on the basis of selectivity at the target level, while the mouse thigh infection model was used to demonstrate the superiority of an apramycin-5-O-glycoside in reducing the bacterial burden in vivo.


Assuntos
Aminoaciltransferases/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Glicosídeos/química , Nebramicina/análogos & derivados , Antibacterianos/química , Configuração de Carboidratos , Sequência de Carboidratos , Éteres/química , Testes de Sensibilidade Microbiana , Nebramicina/química , Nebramicina/farmacologia
4.
Sci Rep ; 9(1): 9273, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239523

RESUMO

Animal-based studies have provided important insights into the structural and functional consequences of noise exposure on the cochlea. Yet, less is known about the molecular mechanisms by which noise induces cochlear damage, particularly at relatively low exposure levels. While there is ample evidence that noise exposure leads to changes in inner ear metabolism, the specific effects of noise exposure on the cochlear metabolome are poorly understood. In this study we applied liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS)-based metabolomics to analyze the effects of noise on the mouse inner ear. Mice were exposed to noise that induces temporary threshold shifts, synaptopathy and permanent hidden hearing loss. Inner ears were harvested immediately after exposure and analyzed by targeted metabolomics for the relative abundance of 220 metabolites across the major metabolic pathways in central carbon metabolism. We identified 40 metabolites differentially affected by noise. Our approach detected novel noise-modulated metabolites and pathways, as well as some already linked to noise exposure or cochlear function such as neurotransmission and oxidative stress. Furthermore, it showed that metabolic effects of noise on the inner ear depend on the intensity and duration of exposure. Collectively, our results illustrate that metabolomics provides a powerful approach for the characterization of inner ear metabolites affected by auditory trauma. This type of information could lead to the identification of drug targets and novel therapies for noise-induced hearing loss.


Assuntos
Orelha Interna/metabolismo , Células Ciliadas Auditivas/metabolismo , Perda Auditiva Provocada por Ruído/metabolismo , Metaboloma , Ruído/efeitos adversos , Animais , Limiar Auditivo , Orelha Interna/patologia , Células Ciliadas Auditivas/patologia , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/patologia , Camundongos , Camundongos Endogâmicos CBA , Espectrometria de Massas em Tandem
5.
J Am Chem Soc ; 141(12): 5051-5061, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30793894

RESUMO

Infectious diseases due to multidrug-resistant pathogens, particularly carbapenem-resistant Enterobacteriaceae (CREs), present a major and growing threat to human health and society, providing an urgent need for the development of improved potent antibiotics for their treatment. We describe the design and development of a new class of aminoglycoside antibiotics culminating in the discovery of propylamycin. Propylamycin is a 4'-deoxy-4'-alkyl paromomycin whose alkyl substituent conveys excellent activity against a broad spectrum of ESKAPE pathogens and other Gram-negative infections, including CREs, in the presence of numerous common resistance determinants, be they aminoglycoside modifying enzymes or rRNA methyl transferases. Importantly, propylamycin is demonstrated not to be susceptible to the action of the ArmA resistance determinant whose presence severely compromises the action of plazomicin and all other 4,6-disubstituted 2-deoxystreptamine aminoglycosides. The lack of susceptibility to ArmA, which is frequently encoded on the same plasmid as carbapenemase genes, ensures that propylamycin will not suffer from problems of cross-resistance when used in combination with carbapenems. Cell-free translation assays, quantitative ribosome footprinting, and X-ray crystallography support a model in which propylamycin functions by interference with bacterial protein synthesis. Cell-free translation assays with humanized bacterial ribosomes were used to optimize the selectivity of propylamycin, resulting in reduced ototoxicity in guinea pigs. In mouse thigh and septicemia models of Escherichia coli, propylamycin shows excellent efficacy, which is better than paromomycin. Overall, a simple novel deoxy alkyl modification of a readily available aminoglycoside antibiotic increases the inherent antibacterial activity, effectively combats multiple mechanisms of aminoglycoside resistance, and minimizes one of the major side effects of aminoglycoside therapy.


Assuntos
Aminoglicosídeos/síntese química , Aminoglicosídeos/farmacologia , Antibacterianos/síntese química , Antibacterianos/farmacologia , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterobacteriaceae/efeitos dos fármacos , Aminoglicosídeos/química , Animais , Antibacterianos/química , Técnicas de Química Sintética , Cobaias , Hexosaminas/síntese química , Hexosaminas/química , Hexosaminas/farmacologia , Hexosaminas/toxicidade , Camundongos , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Relação Estrutura-Atividade
6.
J Toxicol Environ Health A ; 81(20): 1041-1057, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30239325

RESUMO

Exposure to heavy metals may lead to hearing impairment. However, experimental studies have not explored this issue with and without noise exposure in mature animals with environmentally relevant doses. The aim of this study was to investigate ototoxicity produced by lead (Pb) and cadmium (Cd) and noise, singly and in combination, in the adult CBA/CaJ mouse. Metals were delivered via drinking water (0.03 mM, 1 mM, and 3 mM Pb; or 30, 100, and 300 µM Cd) for 12 weeks, resulting in environmentally- and occupationally relevant mean (± standard deviations) blood levels of Pb (2.89 ± 0.44, 38.5 ± 4.9, and 60.1 ± 6.6 µg/dl, respectively) and Cd (1.3 ± 0.23, 6.37 ± 0.87, 27.2 ± 4.1 µg/L, respectively). Metal treatment was also combined with a noise exposure consisting of a 105 dB broadband (2-20 kHz) stimulus for 2 hr or a sham exposure. Auditory performance was determined by comparing auditory brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE) at baseline and after 11 weeks of metal treatment. Metal-exposed animals did not develop significant auditory deficits and did not exhibit morphological damage to cochlear hair cells. In contrast, noise-exposed animals, including those exposed to combinations of metals and noise, demonstrated significant hair cell loss, reduced DPOAE amplitudes, and ABR threshold shifts of 42.2 ± 13 dB at 32 kHz (105 dB noise alone). No significant potentiation or synergistic effects were found in groups exposed to multiple agents. This study establishes a highly reproducible adult mouse model that may be used to evaluate a variety of environmental exposure mixtures.


Assuntos
Limiar Auditivo/efeitos dos fármacos , Cádmio/efeitos adversos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/etiologia , Chumbo/efeitos adversos , Ruído/efeitos adversos , Emissões Otoacústicas Espontâneas/efeitos dos fármacos , Animais , Poluentes Ambientais/toxicidade , Perda Auditiva Provocada por Ruído/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos CBA
7.
EMBO Rep ; 19(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30237157

RESUMO

The 1555 A to G substitution in mitochondrial 12S A-site rRNA is associated with maternally transmitted deafness of variable penetrance in the absence of otherwise overt disease. Here, we recapitulate the suggested A1555G-mediated pathomechanism in an experimental model of mitoribosomal mistranslation by directed mutagenesis of mitoribosomal protein MRPS5. We first establish that the ratio of cysteine/methionine incorporation and read-through of mtDNA-encoded MT-CO1 protein constitute reliable measures of mitoribosomal misreading. Next, we demonstrate that human HEK293 cells expressing mutant V336Y MRPS5 show increased mitoribosomal mistranslation. As for immortalized lymphocytes of individuals with the pathogenic A1555G mutation, we find little changes in the transcriptome of mutant V336Y MRPS5 HEK cells, except for a coordinated upregulation of transcripts for cytoplasmic ribosomal proteins. Homozygous knock-in mutant Mrps5 V338Y mice show impaired mitochondrial function and a phenotype composed of enhanced susceptibility to noise-induced hearing damage and anxiety-related behavioral alterations. The experimental data in V338Y mutant mice point to a key role of mitochondrial translation and function in stress-related behavioral and physiological adaptations.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Ribossômicas/genética , Envelhecimento/genética , Animais , Comportamento Animal , Encéfalo/citologia , Cisteína/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/genética , Células HEK293 , Transtornos da Audição/genética , Humanos , Metionina/metabolismo , Camundongos Transgênicos , Mitocôndrias/genética , Ruído/efeitos adversos , Biossíntese de Proteínas , RNA Mensageiro , Ribossomos/genética , Ribossomos/metabolismo , Estresse Fisiológico/genética
8.
ACS Infect Dis ; 4(7): 1114-1120, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29708331

RESUMO

Syntheses of the 6'- N-(2-hydroxyethyl) and 1- N-(4-amino-2 S-hydroxybutyryl) derivatives of the 4,6-aminoglycoside sisomicin and that of the doubly modified 1- N-(4-amino-2 S-hydroxybutyryl)-6'- N-(2-hydroxyethyl) derivative known as plazomicin are reported together with their antibacterial and antiribosomal activities and selectivities. The 6'- N-(2-hydroxyethyl) modification results in a moderate increase in prokaryotic/eukaryotic ribosomal selectivity, whereas the 1- N-(4-amino-2 S-hydroxybutyryl) modification has the opposite effect. When combined in plazomicin, the effects of the two groups on ribosomal selectivity cancel each other out, leading to the prediction that plazomicin will exhibit ototoxicity comparable to those of the parent and the current clinical aminoglycoside antibiotics gentamicin and tobramycin, as borne out by ex vivo studies with mouse cochlear explants. The 6'- N-(2-hydroxyethyl) modification restores antibacterial activity in the presence of the AAC(6') aminoglycoside-modifying enzymes, while the 1- N-(4-amino-2 S-hydroxybutyryl) modification overcomes resistance to the AAC(2') class but is still affected to some extent by the AAC(3) class. Neither modification is able to circumvent the ArmA ribosomal methyltransferase-induced aminoglycoside resistance. The use of phenyltriazenyl protection for the secondary amino group of sisomicin facilitates the synthesis of each derivative and their characterization through the provision of sharp NMR spectra for all intermediates.


Assuntos
Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Ribossomos/fisiologia , Sisomicina/química , Sisomicina/farmacologia , Aminoglicosídeos/síntese química , Antibacterianos/síntese química , Sequência de Bases , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Biossíntese de Proteínas/efeitos dos fármacos , Sisomicina/síntese química , Relação Estrutura-Atividade
9.
Front Cell Neurosci ; 11: 315, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29114207

RESUMO

Previous studies have reported that modification of histones alters aminoglycoside-induced hair cell death and hearing loss. In this study, we investigated three FDA-approved histone deacetylase (HDAC) inhibitors (vorinostat/SAHA, belinostat, and panobinostat) as protectants against aminoglycoside-induced ototoxicity in murine cochlear explants and in vivo in both guinea pigs and CBA/J mice. Individually, all three HDAC inhibitors reduced gentamicin (GM)-induced hair cell loss in a dose-dependent fashion in explants. In vivo, however, treatment with SAHA attenuated neither GM-induced hearing loss and hair cell loss in guinea pigs nor kanamycin (KM)-induced hearing loss and hair cell loss in mice under chronic models of ototoxicity. These findings suggest that treatment with the HDAC inhibitor SAHA attenuates aminoglycoside-induced ototoxicity in an acute model, but not in chronic models, cautioning that one cannot rely solely on in vitro experiments to test the efficacy of otoprotectant compounds.

10.
Environ Toxicol ; 32(3): 869-876, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27257108

RESUMO

OBJECTIVES: The vestibular system allows the perception of position and motion and its dysfunction presents as motion impairment, vertigo and balance abnormalities, leading to debilitating psychological discomfort and difficulty performing daily tasks. Although declines and deficits in vestibular function have been noted in rats exposed to lead (Pb) and in humans exposed to Pb and cadmium (Cd), no studies have directly examined the pathological and pathophysiological effects upon the vestibular apparatus of the inner ear. METHODS: Eighteen young adult mice were exposed through their drinking water (3 mM Pb, 300 µM Cd, or a control treatment) for 10 weeks. Before and after treatment, they underwent a vestibular assessment, consisting of a rotarod performance test and a novel head stability test to measure the vestibulocolic reflex. At the conclusion of the study, the utricles were analyzed immunohistologically for condition of hair cells and nerve fibers. RESULTS: Increased levels of Pb exposure correlated with decreased head stability in space; no significant decline in performance on rotarod test was found. No damage to the hair cells or the nerve fibers of the utricle was observed in histology. CONCLUSIONS: The young adult CBA/CaJ mouse is able to tolerate occupationally-relevant Pb and Cd exposure well, but the correlation between Pb exposure and reduced head stability suggests that Pb exposure causes a decline in vestibular function. © 2016 Wiley Periodicals, Inc. Environ Toxicol, 2016. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 869-876, 2017.


Assuntos
Encéfalo/efeitos dos fármacos , Cádmio/toxicidade , Chumbo/toxicidade , Animais , Osso e Ossos/química , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Água Potável/química , Masculino , Camundongos , Camundongos Endogâmicos CBA
11.
Expert Opin Investig Drugs ; 26(1): 85-96, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27918210

RESUMO

INTRODUCTION: Noise-induced hearing loss (NIHL) due to industrial, military, and recreational noise exposure is a major, but also potentially preventable cause of acquired hearing loss. For the United States it is estimated that 26 million people (15% of the population) between the ages of 20 and 69 have a high-frequency NIHL at a detriment to the quality of life of the affected individuals and great economic cost to society. Areas covered: This review outlines the pathology and pathophysiology of hearing loss as seen in humans and animal models. Results from molecular studies are presented that have provided the basis for therapeutic strategies successfully applied to animals. Several compounds emerging from these studies (mostly antioxidants) are now being tested in field trials. Expert opinion: Although no clinically applicable intervention has been approved yet, recent trials are encouraging. In order to maximize protective therapies, future work needs to apply stringent criteria for noise exposure and outcome parameters. Attention needs to be paid not only to permanent NIHL due to death of sensory cells but also to temporary effects that may show delayed consequences. Existing results combined with the search for efficacious new therapies should establish a viable treatment within a decade.


Assuntos
Antioxidantes/uso terapêutico , Perda Auditiva Provocada por Ruído/prevenção & controle , Qualidade de Vida , Adulto , Idoso , Animais , Antioxidantes/farmacologia , Perda Auditiva Provocada por Ruído/epidemiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Humanos , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
12.
Nucleic Acids Res ; 43(17): 8601-13, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26264664

RESUMO

Leishmaniasis comprises an array of diseases caused by pathogenic species of Leishmania, resulting in a spectrum of mild to life-threatening pathologies. Currently available therapies for leishmaniasis include a limited selection of drugs. This coupled with the rather fast emergence of parasite resistance, presents a dire public health concern. Paromomycin (PAR), a broad-spectrum aminoglycoside antibiotic, has been shown in recent years to be highly efficient in treating visceral leishmaniasis (VL)-the life-threatening form of the disease. While much focus has been given to exploration of PAR activities in bacteria, its mechanism of action in Leishmania has received relatively little scrutiny and has yet to be fully deciphered. In the present study we present an X-ray structure of PAR bound to rRNA model mimicking its leishmanial binding target, the ribosomal A-site. We also evaluate PAR inhibitory actions on leishmanial growth and ribosome function, as well as effects on auditory sensory cells, by comparing several structurally related natural and synthetic aminoglycoside derivatives. The results provide insights into the structural elements important for aminoglycoside inhibitory activities and selectivity for leishmanial cytosolic ribosomes, highlighting a novel synthetic derivative, compound 3: , as a prospective therapeutic candidate for the treatment of VL.


Assuntos
Antiprotozoários/química , Leishmania/efeitos dos fármacos , Paromomicina/química , Inibidores da Síntese de Proteínas/química , Ribossomos/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Sítios de Ligação , Linhagem Celular , Simulação por Computador , Cobaias , Humanos , Leishmania/crescimento & desenvolvimento , Macrófagos/parasitologia , Masculino , Modelos Moleculares , Neomicina/análogos & derivados , Neomicina/química , Neomicina/toxicidade , Paromomicina/farmacologia , Paromomicina/toxicidade , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Inibidores da Síntese de Proteínas/toxicidade , RNA Ribossômico/química , Ribossomos/química
13.
Front Cell Neurosci ; 9: 276, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26283913

RESUMO

Understanding underlying pathological mechanisms is prerequisite for a sensible design of protective therapies against hearing loss. The triad of age-related, noise-generated, and drug-induced hearing loss displays intriguing similarities in some cellular responses of cochlear sensory cells such as a potential involvement of reactive oxygen species (ROS) and apoptotic and necrotic cell death. On the other hand, detailed studies have revealed that molecular pathways are considerably complex and, importantly, it has become clear that pharmacological protection successful against one form of hearing loss will not necessarily protect against another. This review will summarize pathological and pathophysiological features of age-related hearing impairment (ARHI) in human and animal models and address selected aspects of the commonality (or lack thereof) of cellular responses in ARHI to drugs and noise.

14.
Hear Res ; 318: 18-22, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25456090

RESUMO

C57BL/6 inbred mice are frequently used as models in auditory research, mostly the C57BL/6J and C57BL/6N substrains. Genetic variation and phenotypic disparities between these two substrains have been extensively investigated, but conflicting information exists about differences in their auditory and vestibular phenotypes. Literature-based comparisons are rendered difficult or impossible because most auditory publications do not designate the substrain used. We therefore evaluated commercial C57BL/6N and C57BL/6J mice for their baseline auditory brainstem response (ABR) thresholds at 3 months of age as well as their susceptibility to noise exposure and aminoglycoside antibiotics. Both substrains have similar thresholds at 4 and 12 kHz, but C57BL/6N show significantly higher baseline thresholds at 24 and 32 kHz. Because of these elevated thresholds, the N substrain is unsuitable as a model for drug ototoxicity, which primarily affects high frequencies. Exposure to 2-20 kHz broadband noise for 2 h at 110 dB produced significantly higher threshold shifts in the J substrain. These results suggest caution in the selection of C57BL/6 substrains for auditory research and indicate the need to specify substrains, age and the breeding source in all publications.


Assuntos
Vias Auditivas/patologia , Vias Auditivas/fisiologia , Camundongos Endogâmicos C57BL/genética , Fenótipo , Animais , Antibacterianos/farmacologia , Limiar Auditivo/efeitos dos fármacos , Canamicina/farmacologia , Masculino , Camundongos , Ruído , Vestíbulo do Labirinto/patologia , Vestíbulo do Labirinto/fisiologia
15.
mBio ; 5(5): e01827-14, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25271289

RESUMO

UNLABELLED: The emerging epidemic of drug resistance places the development of efficacious and safe antibiotics in the spotlight of current research. Here, we report the design of next-generation aminoglycosides. Discovery efforts were driven by rational synthesis focusing on 4' alkylations of the aminoglycoside paromomycin, with the goal to alleviate the most severe and disabling side effect of aminoglycosides-irreversible hearing loss. Compounds were evaluated for target activity in in vitro ribosomal translation assays, antibacterial potency against selected pathogens, cytotoxicity against mammalian cells, and in vivo ototoxicity. The results of this study produced potent compounds with excellent selectivity at the ribosomal target, promising antibacterial activity, and little, if any, ototoxicity upon chronic administration. The favorable biocompatibility profile combined with the promising antibacterial activity emphasizes the potential of next-generation aminoglycosides in the treatment of infectious diseases without the risk of ototoxicity. IMPORTANCE: The ever-widening epidemic of multidrug-resistant infectious diseases and the paucity of novel antibacterial agents emerging from modern screening platforms mandate the reinvestigation of established drugs with an emphasis on improved biocompatibility and overcoming resistance mechanisms. Here, we describe the preparation and evaluation of derivatives of the established aminoglycoside antibiotic paromomycin that effectively remove its biggest deficiency, ototoxicity, and overcome certain bacterial resistance mechanisms.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Aminoglicosídeos/síntese química , Animais , Antibacterianos/síntese química , Infecções Bacterianas/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Cobaias , Hexosaminas/síntese química , Hexosaminas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Filogenia , RNA Ribossômico 16S/genética , Ribossomos/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
16.
Neurosci Lett ; 583: 65-9, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25240593

RESUMO

Metformin (N,N-dimethylbiguanidine) is a widely employed oral hypoglycemic agent for the management of type 2 diabetes mellitus. Its antioxidant properties and safe clinical use raise the possibility of preventing gentamicin-induced hearing loss in patients. Therefore, we screened the usefulness of metformin against gentamicin toxicity in murine cochlear explants and in the guinea pig in vivo. We confirmed in organ culture that metformin blocks the gentamicin-induced translocation of endonuclease G into the nucleus of outer hair cells and attenuates hair cell loss. In vivo, gentamicin treatment with 80, 100, or 130mg/kg body weight for 14 days induced significant threshold shifts as determined by auditory brain stem responses. Metformin (30, 75, or 100mg/kg for 14 days) was well tolerated without any indication of auditory side effects. However, co-administration of metformin with gentamicin in various permutations did not prevent loss of auditory function. On the contrary, combined treatment at higher dosages aggravated the gentamicin-induced threshold shifts and caused additional adverse reactions including body weight loss and premature deaths in some animals. These results caution against the use of metformin co-treatment with aminoglycosides and confirm the need for in vivo studies in order to evaluate potentially protective agents selected by in vitro screens.


Assuntos
Antibacterianos/toxicidade , Gentamicinas/toxicidade , Células Ciliadas Auditivas/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Animais , Feminino , Cobaias , Células Ciliadas Auditivas/patologia , Hipoglicemiantes/toxicidade , Técnicas In Vitro , Masculino , Metformina/toxicidade , Camundongos Endogâmicos CBA
17.
Am J Respir Cell Mol Biol ; 50(4): 805-16, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24251786

RESUMO

New drugs are needed to enhance premature termination codon (PTC) suppression to treat the underlying cause of cystic fibrosis (CF) and other diseases caused by nonsense mutations. We tested new synthetic aminoglycoside derivatives expressly developed for PTC suppression in a series of complementary CF models. Using a dual-luciferase reporter system containing the four most prevalent CF transmembrane conductance regulator (CFTR) nonsense mutations (G542X, R553X, R1162X, and W1282X) within their local sequence contexts (the three codons on either side of the PTC), we found that NB124 promoted the most readthrough of G542X, R1162X, and W1282X PTCs. NB124 also restored full-length CFTR expression and chloride transport in Fischer rat thyroid cells stably transduced with a CFTR-G542XcDNA transgene, and was superior to gentamicin and other aminoglycosides tested. NB124 restored CFTR function to roughly 7% of wild-type activity in primary human bronchial epithelial (HBE) CF cells (G542X/delF508), a highly relevant preclinical model with endogenous CFTR expression. Efficacy was further enhanced by addition of the CFTR potentiator, ivacaftor (VX-770), to airway cells expressing CFTR PTCs. NB124 treatment rescued CFTR function in a CF mouse model expressing a human CFTR-G542X transgene; efficacy was superior to gentamicin and exhibited favorable pharmacokinetic properties, suggesting that in vitro results translated to clinical benefit in vivo. NB124 was also less cytotoxic than gentamicin in a tissue-based model for ototoxicity. These results provide evidence that NB124 and other synthetic aminoglycosides provide a 10-fold improvement in therapeutic index over gentamicin and other first-generation aminoglycosides, providing a promising treatment for a wide array of CFTR nonsense mutations.


Assuntos
Aminoglicosídeos/farmacologia , Aminofenóis/farmacologia , Códon sem Sentido/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Quinolonas/farmacologia , Aminoglicosídeos/síntese química , Aminoglicosídeos/farmacocinética , Aminoglicosídeos/toxicidade , Aminofenóis/farmacocinética , Animais , Transporte Biológico , Linhagem Celular , Cloretos/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos CFTR , Camundongos Transgênicos , Órgão Espiral/efeitos dos fármacos , Órgão Espiral/patologia , Quinolonas/farmacocinética , Ratos , Ratos Endogâmicos F344 , Fatores de Tempo , Transfecção
18.
J Biol Chem ; 289(4): 2318-30, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24302717

RESUMO

There is compelling evidence that aminoglycoside (AG) antibiotics can induce the mammalian ribosome to suppress disease-causing nonsense mutations and partially restore the expression of functional proteins. However, prolonged AG treatment can cause detrimental side effects in patients, including most prominently, ototoxicity. Recent mechanistic discussions have considered the relative contributions of mitochondrial and cytoplasmic protein synthesis inhibition to AG-induced ototoxicity. We show that AGs inhibit mitochondrial protein synthesis in mammalian cells and perturb cell respiration, leading to a time- and dose-dependent increase in superoxide overproduction and accumulation of free ferrous iron in mitochondria caused by oxidative damage of mitochondrial aconitase, ultimately leading to cell apoptosis via the Fenton reaction. These deleterious effects increase with the increased potency of AG to inhibit the mitochondrial rather than cytoplasmic protein synthesis, which in turn correlates with their ototoxic potential in both murine cochlear explants and the guinea pig in vivo. The deleterious effects of AGs were alleviated in synthetic derivatives specially designed for the treatment of genetic diseases caused by nonsense mutations and possessing low affinity toward mitochondrial ribosomes. This work highlights the benefit of a mechanism-based drug redesign strategy that can maximize the translational value of "readthrough therapy" while mitigating drug-induced side effects. This approach holds promise for patients suffering from genetic diseases caused by nonsense mutations.


Assuntos
Aminoglicosídeos/farmacologia , Citoplasma/metabolismo , Mitocôndrias/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Ribossomos/metabolismo , Aminoglicosídeos/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Cóclea/metabolismo , Relação Dose-Resposta a Droga , Doenças Genéticas Inatas/tratamento farmacológico , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Cobaias , Células HeLa , Humanos , Camundongos , Proteínas Mitocondriais/biossíntese , Consumo de Oxigênio/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo
19.
J Assoc Res Otolaryngol ; 14(6): 801-11, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23996384

RESUMO

Exogenous tumor necrosis factor-alpha (TNF-α) plays a role in auditory hair cell death by altering the expression of apoptosis-related genes in response to noxious stimuli. Little is known, however, about the function of TNF-α in normal hair cell physiology. We, therefore, investigated the cochlear morphology and auditory function of TNF-α-deficient mice. Auditory evoked brainstem response showed significantly higher thresholds, especially at higher frequencies, in 1-month-old TNF-α(-/-) mice as compared to TNF-α(+/-) and wild type (WT); hearing loss did not progress further from 1 to 4 months of age. There was no difference in the gross morphology of the organ of Corti, lateral wall, and spiral ganglion cells in TNF-α(-/-) mice compared to WT mice at 4 months of age, nor were there differences in the anatomy of the auditory ossicles. Outer hair cells were completely intact in surface preparations of the organ of Corti of TNF-α(-/-) mice, and synaptic ribbon counts of TNF-α(-/-) and WT mice at 4 months of age were similar. Reduced amplitudes of distortion product otoacoustic emissions, however, indicated dysfunction of outer hair cells in TNF-α(-/-) mice. Scanning electron microscopy revealed that stereocilia were sporadically absent in the basal turn and distorted in the middle turn. In summary, our results demonstrate that TNF-α-mutant mice exhibit early hearing loss, especially at higher frequencies, and that loss or malformation of the stereocilia of outer hair cells appears to be a contributing factor.


Assuntos
Perda Auditiva/etiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Cóclea/patologia , Ossículos da Orelha/patologia , Potenciais Evocados Auditivos do Tronco Encefálico , Células Ciliadas Auditivas Externas/patologia , Perda Auditiva/patologia , Perda Auditiva/fisiopatologia , Camundongos , Mutação , Fator de Necrose Tumoral alfa/genética
20.
PLoS One ; 8(4): e61999, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626763

RESUMO

This study delineates the role of peroxiredoxin 3 (Prx3) in hair cell death induced by several etiologies of acquired hearing loss (noise trauma, aminoglycoside treatment, age). In vivo, Prx3 transiently increased in mouse cochlear hair cells after traumatic noise exposure, kanamycin treatment, or with progressing age before any cell loss occurred; when Prx3 declined, hair cell loss began. Maintenance of high Prx3 levels via treatment with the radical scavenger 2,3-dihydroxybenzoate prevented kanamycin-induced hair cell death. Conversely, reducing Prx3 levels with Prx3 siRNA increased the severity of noise-induced trauma. In mouse organ of Corti explants, reactive oxygen species and levels of Prx3 mRNA and protein increased concomitantly at early times of drug challenge. When Prx3 levels declined after prolonged treatment, hair cells began to die. The radical scavenger p-phenylenediamine maintained Prx3 levels and attenuated gentamicin-induced hair cell death. Our results suggest that Prx3 is up-regulated in response to oxidative stress and that maintenance of Prx3 levels in hair cells is a critical factor in their susceptibility to acquired hearing loss.


Assuntos
Sobrevivência Celular/genética , Regulação da Expressão Gênica , Células Ciliadas Auditivas/metabolismo , Perda Auditiva Neurossensorial/genética , Proteínas de Homeodomínio/genética , Animais , Morte Celular , Sequestradores de Radicais Livres/farmacologia , Gentamicinas , Células Ciliadas Auditivas/patologia , Perda Auditiva Neurossensorial/induzido quimicamente , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/metabolismo , Hidroxibenzoatos/farmacologia , Canamicina , Masculino , Camundongos , Camundongos Endogâmicos CBA , Ruído , Estresse Oxidativo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...