Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(8): 2313-2334, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36630533

RESUMO

Wetlands are the largest natural source of methane (CH4 ) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4 , but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model-iPEACE-reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of ≥20% of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (<20%) periods. The lag time between CH4 production and CH4 emissions tended to be short in fen sites (3 ± 2 days) and long in bog sites (13 ± 10 days). Based on a principal component analysis, we found that parameters for CH4 production, plant-mediated transport, and diffusion through water explained 77% of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH4 emissions across biomes. These processes and associated parameters for CH4 emissions among and within the wetlands provide useful insights for interpreting observed net CH4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH4 fluxes.


Assuntos
Ecossistema , Áreas Alagadas , Metano/metabolismo , Regiões Árticas , Solo , Dióxido de Carbono/análise
2.
Sci Total Environ ; 828: 154517, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35278541

RESUMO

Drought events lead to depressions in gross primary productivity (GPP) of forest ecosystems. Photosynthetic and hydraulic traits are important factors governing GPP variation. However, how these functional traits affect GPP responses to drought has not been well understood. We quantified the capacity of GPP to withstand changes during droughts (GPP_resistance) and its post-drought responses (GPP_resilience) using eddy covariance data from the FLUXNET2015 dataset, and investigated how functional traits of dominant tree species that comprised >80% of the biomass (or composition) influenced GPP_resistance or GPP_resilience. Light-saturated photosynthetic rate of dominant tree species was negatively related to GPP_resistance, and was positively correlated with GPP_resilience. Forests dominated by species with higher hydraulic safety margins (HSM), smaller vessel diameter (Vdia) and lower sensitivity of canopy stomatal conductance per unit land area (Gs) to droughts had a higher GPP_resistance, while those dominated by species with lower HSM, larger Vdia and higher sensitivity of Gs to droughts exhibited a higher GPP_resilience. Differences in functional traits of forests located in diverse climate regions led to distinct GPP sensitivities to droughts. Forests located in humid regions had a higher GPP_resilience while those in arid regions exhibited a higher GPP_resistance. Forest GPP_resistance was negatively related to drought intensity, and GPP_resilience was negatively related to drought duration. Our findings highlight the significant role of functional traits in governing forest resistance and resilience to droughts. Overall, forests dominated by species with higher hydraulic safety were more resistant to droughts, while forests containing species with higher photosynthetic and hydraulic efficiency recovered better from drought stress.


Assuntos
Secas , Ecossistema , Mudança Climática , Florestas , Fotossíntese , Árvores/fisiologia
3.
Nat Commun ; 12(1): 2266, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859182

RESUMO

Wetland methane (CH4) emissions ([Formula: see text]) are important in global carbon budgets and climate change assessments. Currently, [Formula: see text] projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent [Formula: see text] temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that [Formula: see text] are often controlled by factors beyond temperature. Here, we evaluate the relationship between [Formula: see text] and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between [Formula: see text] and temperature, suggesting larger [Formula: see text] sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments.

4.
Glob Chang Biol ; 27(15): 3582-3604, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914985

RESUMO

While wetlands are the largest natural source of methane (CH4 ) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4 . At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.


Assuntos
Metano , Áreas Alagadas , Dióxido de Carbono , Ecossistema , Água Doce , Estações do Ano
5.
Sci Total Environ ; 648: 325-336, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30121032

RESUMO

Increasing atmospheric nitrogen (N) deposition could profoundly impact structure and functioning of forest ecosystems. Therefore, we conducted a two-year (2014-2015) experiment to assess the responses of tree sap flux density (Js) and intrinsic water use efficiency (WUEi) of dominant tree species (Liquidambar formosana, Quercus acutissima and Quercus variabilis) to increased N deposition at a manipulative experiment with canopy and understory N addition in a deciduous broadleaved forest. Five treatments were administered including N addition of 25 kg ha-1 year-1 and 50 kg ha-1 year-1 onto canopy (C25 and C50) and understory (U25 and U50), and control treatment (CK, without N addition). Our results showed neither canopy nor understory N addition had an impact on leaf N content and C:N ratio (P > 0.05). Due to the distinct influencing ways, canopy and understory N addition generated different impacts on Js and WUEi of the dominant tree species. Canopy N addition increased WUEi of Q. variabilis, whereas understory addition treatment had a minimal impact on WUEi. Both N additions did not exert impacts on WUEi of L. formosana and Q. acutissima. Canopy N addition exerted negative impacts on Js and its sensitivity to micrometeorological factors of Q. acutissima and Q. variabilis in 2014, while understory addition showed no effect. Neither canopy nor understory N addition had an influence on Js of L. formosana in 2014. Probably owing to the increased soil acidification as the experiment proceeded, Js of L. formosana and Q. variabilis was decreased by understory N addition while canopy addition had a minimal effect in 2015. Thus, the traditional understory addition approach could not fully reflect the effects of increased N deposition on the canopy-associated transpiration process indicated by the different responses of Js and WUEi to canopy and understory N addition, and exaggerated its influences induced by the variation of soil chemical properties.

6.
Glob Chang Biol ; 24(10): 4841-4856, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29949220

RESUMO

Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosystems. Here, we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2 ] enrichment (ECO2 ; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half-hourly basis. These measurements were synthesized using a one-dimensional Richard's equation model to evaluate treatment differences in transpiration (T), evaporation (E), ET, and WY. We found that ECO2 did not create significant differences in stand T, ET, or WY under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. While T, ET, and WY responded to fertilization, this response was weak (<3% of mean annual precipitation). Likewise, while E responded to ECO2 in the first 7 years of the study, this effect was of negligible magnitude (<1% mean annual precipitation). Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model-data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models.


Assuntos
Dióxido de Carbono/metabolismo , Florestas , Pinus taeda/metabolismo , Transpiração Vegetal , Solo/química , Água/metabolismo , Ecossistema , Folhas de Planta/fisiologia
7.
Environ Monit Assess ; 190(3): 176, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29484491

RESUMO

Biogeochemical processes in wetland soils are complex and are driven by a microbiological community that competes for resources and affects the soil chemistry. Depending on the availability of various electron acceptors, the high carbon input to wetland soils can make them important sources of methane production and emissions. There are two significant pathways for methanogenesis: acetoclastic and hydrogenotrophic methanogenesis. The hydrogenotrophic pathway is dependent on the availability of dissolved hydrogen gas (H2), and there is significant competition for available H2. This study presents simultaneous measurements of dissolved methane and H2 over a 2-year period at three tidal marshes in the New Jersey Meadowlands. Methane reservoirs show a significant correlation with dissolved organic carbon, temperature, and methane emissions, whereas the H2 concentrations measured with dialysis samplers do not show significant relationships with these field variables. Data presented in this study show that increased dissolved H2 reservoirs in wetland soils correlate with decreased methane reservoirs, which is consistent with studies that have shown that elevated levels of H2 inhibit methane production by inhibiting propionate fermentation, resulting in less acetate production and hence decreasing the contribution of acetoclastic methanogenesis to the overall production of methane.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Hidrogênio/análise , Metano/análise , Solo/química , Áreas Alagadas , Acetatos/metabolismo , Carbono/análise , Dióxido de Carbono/metabolismo , Fermentação/fisiologia , New Jersey , Propionatos/metabolismo , Microbiologia do Solo , Temperatura
8.
Environ Pollut ; 223: 497-506, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28139323

RESUMO

Phytoremediation, a technique used to reclaim heavy metal-contaminated soils, requires an understanding of plant physiological responses to heavy metals. However, the majority of studies documenting heavy metal impact on plant functioning have been performed in laboratory or greenhouse settings. We predicted that increased soil heavy metal concentrations reduce photosynthesis and biomass production in trees growing in metal contaminated soil in a naturally re-vegetated urban brownfield. Leaf gas exchange, leaf carbon and nitrogen concentration, and tree biomass were recorded and compared for Populus deltoides and Populus tremuloides growing in an urban brownfield. The CO2 compensation point (CCP) differed significantly between soil metal concentrations and species, with P. deltoides displaying a greater CCP and P. tremuloides displaying a lower CCP as soil metal concentration increased, despite no changes in dark respiration for either species. In terms of biomass, only total branch weight (TBW) and leaf area (LA) differed significantly between soil metal concentrations, though the difference was largely attributable to variation in diameter at breast height (DBH). Furthermore, TBW and LA values for P. deltoides did not decrease with increasing soil metal concentration. Soil metal concentration, thus, had minimal effect on the relationship between tree age and DBH, and no effect on relationships of tree age and height or LA, respectively. Significant differences between soil metal concentrations and species were found for δ15N (isotopic nitrogen ratio) while leaf nitrogen content (% N) also differed significantly between species. Long-term water use efficiency derived from carbon isotope analysis (iWUEisotope) differed significantly between trees grown on different soil metal concentrations and a significant species-metal concentration interaction was detected indicating that the two study species responded differentially to the soil metal concentrations. Specifically, P. tremuloides enhanced while P. deltoides reduced long-term iWUEisotope as soil metal concentration increased, further emphasizing the importance of species and possible genotype selection for phytoremediation.


Assuntos
Biodegradação Ambiental , Carbono/metabolismo , Fotossíntese , Populus/metabolismo , Árvores/metabolismo , Biomassa , Genótipo , Metais Pesados/farmacologia , Nitrogênio/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Populus/efeitos dos fármacos , Populus/genética , Poluentes do Solo/farmacologia
9.
Tree Physiol ; 36(8): 967-82, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27259637

RESUMO

A comparative analysis of the impacts of prescribed fire on three upland forest stands in the Northeastern Atlantic Plain, NJ, USA, was conducted. Effects of prescribed fire on water use and gas exchange of overstory pines were estimated via sap-flux rates and photosynthetic measurements on Pinus rigida Mill. Each study site had two sap-flux plots, one experiencing prescribed fire and one control (unburned) plot for comparison before and after the fire. We found that photosynthetic capacity in terms of Rubisco-limited carboxylation rate and intrinsic water-use efficiency was unaffected, while light compensation point and dark respiration rate were significantly lower in the burned vs control plots post-fire. Furthermore, quantum yield in pines in the pine-dominated stands was less affected than pines in the mixed oak/pine stand, as there was an increase in quantum yield in the oak/pine stand post-fire compared with the control (unburned) plot. We attribute this to an effect of forest type but not fire per se. Average daily sap-flux rates of the pine trees increased compared with control (unburned) plots in pine-dominated stands and decreased in the oak/pine stand compared with control (unburned) plots, potentially due to differences in fuel consumption and pre-fire sap-flux rates. Finally, when reference canopy stomatal conductance was analyzed, pines in the pine-dominated stands were more sensitive to changes in vapor pressure deficit (VPD), while stomatal responses of pines in the oak/pine stand were less affected by VPD. Therefore, prescribed fire affects physiological functioning and water use of pines, but the effects may be modulated by forest stand type and fuel consumption pattern, which suggests that these factors may need to be taken into account for forest management in fire-dominated systems.


Assuntos
Incêndios , Pinus/fisiologia , Ecossistema , Florestas , New Jersey
10.
Front Plant Sci ; 6: 297, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999966

RESUMO

Pine-oak ecosystems are globally distributed even though differences in anatomy and leaf habit between many co-occurring oaks and pines suggest different strategies for resource use, efficiency and stomatal behavior. The New Jersey Pinelands contain sandy soils with low water- and nutrient-holding capacity providing an opportunity to examine trade-offs in resource uptake and efficiency. Therefore, we compared resource use in terms of transpiration rates and leaf nitrogen content and resource-use efficiency including water-use efficiency (WUE) via gas exchange and leaf carbon isotopes and photosynthetic nitrogen-use efficiency (PNUE) between oaks (Quercus alba, Q. prinus, Q. velutina) and pines (Pinus rigida, P. echinata). We also determined environmental drivers [vapor pressure deficit (VPD), soil moisture, solar radiation] of canopy stomatal conductance (GS) estimated via sap flow and stomatal sensitivity to light and soil moisture. Net assimilation rates were similar between genera, but oak leaves used about 10% more water and pine foliage contained about 20% more N per unit leaf area. Therefore, oaks exhibited greater PNUE while pines had higher WUE based on gas exchange, although WUE from carbon isotopes was not significantly different. For the environmental drivers of GS, oaks had about 10% lower stomatal sensitivity to VPD normalized by reference stomatal conductance compared with pines. Pines exhibited a significant positive relationship between shallow soil moisture and GS, but only GS in Q. velutina was positively related to soil moisture. In contrast, stomatal sensitivity to VPD was significantly related to solar radiation in all oak species but only pines at one site. Therefore, oaks rely more heavily on groundwater resources but have lower WUE, while pines have larger leaf areas and nitrogen acquisition but lower PNUE demonstrating a trade-off between using water and nitrogen efficiently in a resource-limited ecosystem.

11.
Front Plant Sci ; 5: 294, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25018759

RESUMO

Carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling and may be affected by disturbance and climate change. As a larger body of research becomes available about leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, a more mechanistic understanding is developing which can improve modeling efforts. Here, we summarize some of the major effects of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cycling in an Atlantic Coastal Plain upland oak/pine and upland pine forest. During drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance.

12.
Tree Physiol ; 34(2): 159-73, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24488856

RESUMO

Oak species are well suited to water-limited conditions by either avoiding water stress through deep rooting or tolerating water stress through tight stomatal control. In co-occurring species where resources are limited, species may either partition resources in space and/or time or exhibit differing efficiencies in the use of limited resources. Therefore, this study seeks to determine whether two co-occurring oak species (Quercus prinus L. and Quercus velutina Lam.) differ in physiological parameters including photosynthesis, stomatal conductance, water-use (WUE) and nitrogen-use efficiency (NUE), as well as to characterize transpiration and average canopy stomatal responses to climatic variables in a sandy, well-drained and nutrient-limited ecosystem. The study was conducted in the New Jersey Pinelands and we measured sap flux over a 3-year period, as well as leaf gas exchange, leaf nitrogen and carbon isotope concentrations. Both oak species showed relatively steep increases in leaf-specific transpiration at low vapor pressure deficit (VPD) values before maximum transpiration rates were achieved, which were sustained over a broad range in VPD. This suggests tight stomatal control over transpiration in both species, although Q. velutina showed significantly higher leaf-level and canopy-level stomatal conductance than Q. prinus. Average daytime stomatal conductance was positively correlated with soil moisture and both oak species maintained at least 75% of their maximum canopy stomatal conductance at soil moistures in the upper soil layer (0-0.3 m) as low as 0.03 m(3) m(3)(-3). Quercus velutina had significantly higher photosynthetic rates, maximum Rubisco-limited and electron-transport-limited carboxylation rates, dark respiration rates and nitrogen concentration per unit leaf area than Q. prinus. However, both species exhibited similar WUEs and NUEs. Therefore, Q. prinus has a more conservative resource-use strategy, while Q. velutina may need to exploit niches that are locally higher in nutrients and water. Likewise, both species appear to tap deep, stable water sources, highlighting the importance of rooting depth in modeling transpiration and stomatal conductance in many oak ecosystems.


Assuntos
Ecossistema , Nitrogênio/farmacologia , Fósforo/farmacologia , Quercus/fisiologia , Água/farmacologia , Isótopos de Carbono , Gases/metabolismo , Umidade , Luz , Isótopos de Nitrogênio , Especificidade de Órgãos , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/efeitos da radiação , Quercus/efeitos dos fármacos , Quercus/efeitos da radiação , Solo , Temperatura
13.
Front Plant Sci ; 3: 103, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22661978

RESUMO

Sap flow measurements have become integral in many physiological and ecological investigations. A number of methods are used to estimate sap flow rates in trees, but probably the most popular is the thermal dissipation (TD) method because of its affordability, relatively low power consumption, and ease of use. However, there have been questions about the use of this method in ring-porous species and whether individual species and site calibrations are needed. We made concurrent measurements of sap flow rates using TD sensors and the tissue heat balance (THB) method in two oak species (Quercus prinus Willd. and Quercus velutina Lam.) and one pine (Pinus echinata Mill.). We also made concurrent measurements of sap flow rates using both 1 and 2-cm long TD sensors in both oak species. We found that both the TD and THB systems tended to match well in the pine individual, but sap flow rates were underestimated by 2-cm long TD sensors in five individuals of the two ring-porous oak species. Underestimations of 20-35% occurred in Q. prinus even when a "Clearwater" correction was applied to account for the shallowness of the sapwood depth relative to the sensor length and flow rates were underestimated by up to 50% in Q. velutina. Two centimeter long TD sensors also underestimated flow rates compared with 1-cm long sensors in Q. prinus, but only at large flow rates. When 2-cm long sensor data in Q. prinus were scaled using the regression with 1-cm long data, daily flow rates matched well with the rates measured by the THB system. Daily plot level transpiration estimated using TD sap flow rates and scaled 1 cm sensor data averaged about 15% lower than those estimated by the THB method. Therefore, these results suggest that 1-cm long sensors are appropriate in species with shallow sapwood, however more corrections may be necessary in ring-porous species.

14.
Front Plant Sci ; 2: 15, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22639580

RESUMO

Stomatal conductance controls carbon and water fluxes in forest ecosystems. Therefore, its accurate characterization in land-surface flux models is necessary. Sap-flux scaled canopy conductance was used to evaluate the effect of drought, disturbance, and mortality of three oak species (Quercus prinus, Q. velutina, and Q. coccinea) in an upland oak/pine stand in the New Jersey Pine Barrens from 2005 to 2008. Canopy conductance (G(C)) was analyzed by performing boundary line analysis and selecting for the highest value under a given light condition. Regressing G(C) with the driving force vapor pressure deficit (VPD) resulted in reference canopy conductance at 1 kPa VPD (G(Cref)). Predictably, drought in 2006 caused G(Cref) to decline. Q. prinusG(Cref) was least affected, followed by Q. coccinea, with Q. velutina having the highest reductions in G(Cref). A defoliation event in 2007 caused G(Cref) to increase due to reduced leaf area and a possible increase in water availability. In Q. prinus, G(Cref) quadrupled, while doubling in Q. velutina, and increasing by 50% in Q. coccinea. Tree mortality in 2008 led to higher G(Cref) in the remaining Q. prinus but not in Q. velutina or Q. coccinea. Comparing light response curves of canopy conductance (G(Cref)) and stomatal conductance (g(S)) derived from gas-exchange measurements showed marked differences in behavior. Canopy G(Cref) failed to saturate under ambient light conditions whereas leaf-level g(S) saturated at 1,200 µmol m(-2) s(-1). The results presented here emphasize the differential responses of leaf and canopy-level conductance to saturating light conditions and the effects of various disturbances (drought, defoliation, and mortality) on the carbon and water balance of an oak-dominated forest.

15.
Tree Physiol ; 30(8): 1001-15, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20566583

RESUMO

Anatomical and physiological acclimation to water stress of the tree hydraulic system involves trade-offs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth. Here, we study the role of variations in root and branch maximum hydraulic specific conductivity (k(s-max)) under high and low soil moisture in determining whole-tree hydraulic conductance (K(tree)) and in mediating stomatal control of gas exchange in four contrasting tree species growing under ambient and elevated CO2 (CO2(a) and CO2(e)). We hypothesized that K(tree) would adjust to CO2(e) through an increase in root and branch k(s-max) in response to anatomical adjustments. However, physiological changes observed under CO2(e) were not clearly related to structural change in the xylem of any of the species. The only large effect of CO2(e) occurred in branches of Liquidambar styraciflua L. and Cornus florida L. where an increase in k(s-max) and a decrease in xylem resistance to embolism (-P50) were measured. Across species, embolism in roots explained the loss of K(tree) and therefore indirectly constituted a hydraulic signal involved in stomatal regulation and in the reduction of G(s-ref), the sap-flux-scaled mean canopy stomatal conductance at a reference vapour pressure deficit of 1 kPa. Across roots and branches, the increase in k(s-max) was associated with a decrease in -P50, a consequence of structural acclimation such as larger conduits, lower pit resistance and lower wood density. Across species, treatment-induced changes in K(tree) translated to similar variation in G(s-ref). However, the relationship between G(s-ref) and K(tree) under CO2(a) was steeper than under CO2(e), indicating that CO2(e) trees have lower G(s-ref) at a given K(tree) than CO2(a) trees. Under high soil moisture, CO2(e) greatly reduced G(s-ref). Under low soil moisture, CO2(e) reduced G(s-ref) of only L. styraciflua and Ulmus alata. In some species, higher xylem dysfunction under CO2(e) might impact tree performance in a future climate when increased evaporative demand could cause a greater loss of hydraulic function. The results contributed to our knowledge of the physiological and anatomical mechanisms underpinning the responses of tree species to drought and more generally to global change.


Assuntos
Dióxido de Carbono/metabolismo , Mudança Climática , Raízes de Plantas/fisiologia , Árvores/classificação , Árvores/fisiologia , Água/fisiologia , Aclimatação , Atmosfera/química , Dióxido de Carbono/química , Condutividade Elétrica , Estômatos de Plantas/fisiologia , Fatores de Tempo , Árvores/genética
16.
J Neurotrauma ; 19(8): 975-83, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12225657

RESUMO

Neurogenesis is not only restricted to embryonic development, but also occurs in adult mammalian brains, including human. In this study, evidence is provided, that neurogenesis is involved in the repair of hippocampal and cortical structures after CNS injury. Cortical contusion was induced in 8-week-old Wistar rats. This trauma resulted in a primary cortical lesion and ipsilateral distant remote hippocampal damage, involving primarily CA3-pyramidal cells. The progression of injury was followed over a time course of 7 days, using Nissl-staining and a monoclonal antibody against betaIII tubulin-a specific marker for neurogenic cells. Nissl staining showed a partial recovery of damaged cortical and hippocampal cells at day 7. This recovery was accompanied by an increase of neurogenic cells in these structures, particularly in the dentate gyrus and the neocortical areas. Taken together, these findings provide evidence for the involvement of neurogenesis in the repair processes after traumatic brain injury.


Assuntos
Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Regeneração Nervosa/fisiologia , Tubulina (Proteína)/biossíntese , Animais , Córtex Cerebral/patologia , Hipocampo/patologia , Imuno-Histoquímica , Masculino , Degeneração Neural/patologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...